• An Introduction to Measure Theory and Probability


    Luigi Ambrosio, Giuseppe Da Prato, Andrea Mennucci, An Introduction to Measure Theory and Probability.

    Chapter 1 Measure spaces

    Index:

    • ring/algebras P2
    • (sigma)-algebras P3
    • Borel (sigma)-algebras P3
    • (sigma)-additive P4
    • ((X,mathscr{E},mu)) P7
    • finite, (sigma)-finite P7
    • (mathscr{E}_{mu}), (mu-)completion P8
    • (pi-)systems P9
    • Dynkin-systems P10
    • Outer measure P11
    • (mathscr{S}:={(a,b]:a<b in mathbb{R}}) P12
    • Lebesgue measure (lambda) P12

    P9页的Caratheodory定理是在环(mathscr{E})的基础上建立的(实际上半环足以), 通过半环生成(sigma)域(通过(sigma(mathscr{K})=mathscr{D}(mathscr{K}))). 通过(mathscr{E})构建可测集域(外测度, 扩张), 由于(sigma(mathscr{E}))也是可测集, 所以满足所需的可加性. 当定义在(mathscr{E})的测度(mu)(sigma)有限的时候(或者存在一个分割), 这个扩张是唯一的.

    Chapter 2 Integration

    Index:

    • Inverse image (varphi^{-1}(I)) P23
    • ((mathscr{E}, mathscr{F}))-measureable P23
    • canonical representation of (varphi) P25

    [varphi(x)=sum_{k-1}^n a_k 1_{A_k}, A_k = varphi^{-1}({a_k}). ]

    • repartition function P28
    • archimedean integral P30
    • (mu)-integrable P32
    • (mu)-uniformly integrable P37

    什么是可测函数, 以及什么是(mathscr{E})-可测函数是很重要的 (P24).
    什么是(mu)-integrable也是很重要的(在(mathscr{E})-可测函数定义的).
    不同于我看到的一般的积分的定义, 这一节是从 repartition function 和 archimedean integral入手的, 特别是

    [int_X varphi dmu := int_{0}^{infty} mu({varphi > t}) mathrm{d}t, ]

    的定义式非常之有趣.

    Chapter 3 Spaces of integrable functions

    Index:

    • (L^p),(mathcal{L}^p) P44
    • equivalence class ( ilde{varphi})
    • Legendre transform P45
    • (mu)-essentially bounded P45
    • Jensen inequality P45
    • (C_b) P54

    首先需要注意的是, (L^p)空间是定义在(mu)-integrable上的, 所以其针对值域为((mathbb{R},mathscr{B}(mathbb{R}))).

    Chapter 4 Hilbert spaces

    Index:

    • Orthonormal system P63
    • Complete orthonormal system P64
    • Separable P64
    • pre-Hilbert space P57
    • Hilbert space (complete) P58

    投影定理, 子空间或者凸闭集(条件和结论需要调整).

    Chapter 5 Fourier series

    Index:

    • "Heaviside" function P71
    • totally convergent P75

    Chapter 6 Operations on measures

    Index:

    • Measureable rectangle P79
    • sections, (E_x,E^y) P79
    • dimensional constant (w_n=mathcal{L}^n(B(0,1))) p83
    • (delta)-box P84
    • cylindrical set P86
    • concentrated set P92
    • singular measures P92
    • total variation P97
    • stieltjes integral P103
    • weak convergence P103
    • Tightness of measures P104
    • Fourier transform P108

    这一章很重要!

    Part1: Fubini-Tonelli

    Part2: Lebesgue分解定理P92

    Part3: Signed measures

    Part4: (F(x):= mu((-infty,x])), P102, 弱收敛 (lim_{h ightarrow infty}mu_h(-infty, x]=mu((-infty, x])) (除去可数多个点)

    Part5: Fourier transform, 以及测度的Fourier transform (后面概率的表示函数有用), Levy定理P112.

    Chapter 7 The fundamental theorem of the integral calculus

    Index:

    • density points, rarefaction points P121
    • Heaviside function P121
    • Cantor-Vitali function P121
    • total variation P116

    [f(x)=f(a)+int_a^x g(t)mathrm{d}t, ]

    [lim_{rdownarrow0} frac{1}{omega_n r^n} int_{B_r(x)} |f(y)-f(x)|mathrm{d}y=0. ]

    Chapter 8 Measurable transformations

    Index:

    • differential P123
    • Jacobian determinant P125
    • diffeomorphism P125
    • critical set (C_F) P125

    [F_# mu(I) := mu(F^{-1}(I)) ]

    有一个问题就是,我看其理论都是限制在非负函数上的, 但是个人感觉直接推广到可测函数上.
    需要用到逆函数定理, 很有意思.

    [int_{F(U)} varphi(y) mathrm{d}y = int_{U} varphi(F(x)) |JF|(x)mathrm{d}x. ]

    Chapter 9 General concepts of Probability

    Index:

    • elementary event P131
    • laws P131
    • Random variable P133
    • binomial law P138
    • Characteristic function P139

    注意:

    [mathbb{E}_{mathbb{P}}(X):= int_{Omega} X(omega) mathrm{d} mathbb{P}(omega), ]

    是限制在(mathbb{P})-integrable之上的.

    Chapter 10 Conditional probability and independece

    Index:

    • Independece of two families P147
    • (sigma)-algebra generated by a random variable P147
    • Independence of two random variables P147
    • Independence of familes (mathscr{A}_i) P149
    • (sigma(X):= {{X in A}:A in mathscr{E}}) P149
    • (sigma({X}_{i in I})) P152
    • independent and identically distributed P155

    由条件概率衍生到独立性, 随机变量的独立性有几个等价条件P147, P150.
    需要区分联合分布的概率和(mu imes v)的区别 (当独立时才等价).

    Chapter 11 Convergence of random variables

    测度 概率
    一致收敛 一致收敛
    几乎一致收敛 几乎一致收敛
    几乎处处收敛 几乎处处收敛
    依测度收敛 依概率收敛
    (L^p)收敛 (lim_{n ightarrow infty}mathbb{E}(cdot)^p=0)
    弱收敛 依分布收敛

    (几乎)一致收敛可以得到几乎处处和依测度收敛.
    几乎处处在测度有限的情况下可以推几乎一致收敛, 从而得到依测度收敛.
    依测度收敛必存在一个几乎处出收敛的子列.
    (L^p)收敛一定能够有依测度收敛.

    特别地, 依概率收敛有依分布收敛, 只有当依分布收敛到常数(c)的时候, 才能推依概率收敛到(c)(对应的有限测度).

    Chapter 12 Sequences of independent variables

    Index:

    • terminal (sigma)-algerba (cap_{n} mathscr{B}_n) P172
    • empirical distribution function P180

    Kolmogorov's dichotomy P173 很有趣.

    大数定律再到中心极限定理.

    Chapter 13 Stationary sequences and elements of ergodic theory

    Index:

    • stationary sequences P186
    • measure-preserving transformation P188
    • T-invariant P189
    • Ergodic maps P189
    • conjugate maps P190

    平稳序列的定义需要注意, 另外一些理论有趣却渐渐脱离了掌控, 有点摸不着头脑.

  • 相关阅读:
    【RabbitMQ】10 深入部分P3 死信队列(交换机)
    【RabbitMQ】09 深入部分P2 消费限流 & TTL
    【RabbitMQ】08 深入部分P1 可靠性投递
    【RabbitMQ】06 Spring整合RabbitMQ
    【RabbitMQ】07 SpringBoot整合RabbitMQ
    【RabbitMQ】05 通配符模式
    【RabbitMQ】04 路由模式
    【RabbitMQ】03 订阅模式
    【RabbitMQ】02 工作队列模式
    【RabbitMQ】01 简单模式
  • 原文地址:https://www.cnblogs.com/MTandHJ/p/13604710.html
Copyright © 2020-2023  润新知