• Pytorch 图片载入


    import os
    import torch
    import pandas as pd
    from skimage import io, transform
    import numpy as np
    import matplotlib.pyplot as plt
    from torch.utils.data import Dataset, DataLoader
    from torchvision import transforms, utils
    
    # Ignore warnings
    import warnings
    warnings.filterwarnings("ignore")
    

    载入图片和坐标

    landmarks_frame = pd.read_csv('data/faces/face_landmarks.csv')
    n=65
    img_name = landmarks_frame.iloc[n, 0]  #获取图片的名称
    landmarks = landmarks_frame.iloc[n, 1:].as_matrix()  #获取点的位置
    landmarks = landmarks.astype('float').reshape(-1, 2)
    
    landmarks_frame.iloc[:3, :] #展示一下csv里面的格式
    
    image_name part_0_x part_0_y part_1_x part_1_y part_2_x part_2_y part_3_x part_3_y part_4_x ... part_63_x part_63_y part_64_x part_64_y part_65_x part_65_y part_66_x part_66_y part_67_x part_67_y
    0 0805personali01.jpg 27 83 27 98 29 113 33 127 39 ... 93 136 100 141 93 135 89 135 84 134
    1 1084239450_e76e00b7e7.jpg 70 236 71 257 75 278 82 299 90 ... 148 311 179 308 149 312 137 314 128 312
    2 10comm-decarlo.jpg 66 114 65 128 67 142 68 156 72 ... 128 162 136 167 127 166 121 165 116 164

    3 rows × 137 columns

    接下来,是如何展示图片,以及把点画在图片之上

    def show_landmarks(image, landmarks):
        fig, ax = plt.subplots()
        ax.imshow(image)
        ax.scatter(landmarks[:, 0], landmarks[:, 1], s=10, marker='.', c='r')
        plt.pause(0.001)  #暂停让图片更新?
        plt.show()
        
    show_landmarks(io.imread(os.path.join('data/faces/', img_name)),
                  landmarks)
        
    

    在这里插入图片描述

    torch.utils.data.Dataset是一个抽象基类表示一个数据集,我们需要为其设定__len__方法和__getitem__方法.

    class FaceLandmarksDataset(Dataset):
        def __init__(self, csv_file, root_dir, transform=None):
            self.landmarks_frame = pd.read_csv(csv_file)
            self.root_dir = root_dir
            self.transform = transform
            
        def __len__(self):
            return len(self.landmarks_frame)
        
        def __getitem__(self, idx):
            img_name = os.path.join(self.root_dir,
                                   self.landmarks_frame.iloc[idx, 0])
            image = io.imread(img_name)
            landmarks = self.landmarks_frame.iloc[idx, 1:]
            landmarks = np.array([landmarks])
            landmarks = landmarks.astype('float').reshape(-1, 2)
            sample = {'image': image, 'landmarks': landmarks}
            
            if self.transform:
                sample = self.transform(sample)
                
            return sample
    

    利用这个类,我们来展示一下前4幅图像

    face_dataset = FaceLandmarksDataset(csv_file='data/faces/face_landmarks.csv', 
                                        root_dir='data/faces/')
    
    def show_landmarks(image, landmarks):
        plt.imshow(image)
        plt.scatter(landmarks[:, 0], landmarks[:, 1], s=10, marker='.', c='r')
        plt.pause(0.001)  #暂停让图片更新?
        
    fig = plt.figure()
    for i in range(len(face_dataset)):
        sample = face_dataset[i]
        print(i, sample['image'].shape, sample['landmarks'].shape)
        
        ax = plt.subplot(1, 4, i+1)
        plt.tight_layout()
        ax.set_title("Sample #{}".format(i))
        ax.axis("off")
        show_landmarks(**sample)
        if i == 3:
            plt.show()
            break
    
    0 (324, 215, 3) (68, 2)
    

    在这里插入图片描述

    1 (500, 333, 3) (68, 2)
    

    在这里插入图片描述

    2 (250, 258, 3) (68, 2)
    

    在这里插入图片描述

    3 (434, 290, 3) (68, 2)
    

    在这里插入图片描述

    Transforms

    很多时候,我们需要对图片进行一些变化,比方说大小的调整等等

    利用函子(_call_)能够很好很方便对图片进行处理

    class Rescale(object):
        """Rescale the image in a sample to a given size.
    
        Args:
            output_size (tuple or int): Desired output size. If tuple, output is
                matched to output_size. If int, smaller of image edges is matched
                to output_size keeping aspect ratio the same.
        """
    
        def __init__(self, output_size):
            assert isinstance(output_size, (int, tuple)) #output_size应当是一个整数或者元组
            self.output_size = output_size
    
        def __call__(self, sample):
            image, landmarks = sample['image'], sample['landmarks']
    
            h, w = image.shape[:2]
            if isinstance(self.output_size, int): #如果是一个整数,那么缩放的逻辑是要保持比例
                if h > w:
                    new_h, new_w = self.output_size * h / w, self.output_size
                else:
                    new_h, new_w = self.output_size, self.output_size * w / h
            else: #否则就直接等于就好了
                new_h, new_w = self.output_size
    
            new_h, new_w = int(new_h), int(new_w)
    
            img = transform.resize(image, (new_h, new_w))
    
            # h and w are swapped for landmarks because for images,
            # x and y axes are axis 1 and 0 respectively
            landmarks = landmarks * [new_w / w, new_h / h] #坐标也要相应改变大小
    
            return {'image': img, 'landmarks': landmarks}
    
    class RandomCrop(object): #随机裁剪,但是实际上是一整块来的
        """Crop randomly the image in a sample.
    
        Args:
            output_size (tuple or int): Desired output size. If int, square crop
                is made.
        """
    
        def __init__(self, output_size):
            assert isinstance(output_size, (int, tuple))
            if isinstance(output_size, int):
                self.output_size = (output_size, output_size)
            else:
                assert len(output_size) == 2
                self.output_size = output_size
    
        def __call__(self, sample):
            image, landmarks = sample['image'], sample['landmarks']
    
            h, w = image.shape[:2]
            new_h, new_w = self.output_size
    
            top = np.random.randint(0, h - new_h)
            left = np.random.randint(0, w - new_w)
    
            image = image[top: top + new_h,
                          left: left + new_w]
    
            landmarks = landmarks - [left, top]
    
            return {'image': image, 'landmarks': landmarks}
    
    
    
    class ToTensor(object):
        """Convert ndarrays in sample to Tensors."""
    
        def __call__(self, sample):
            image, landmarks = sample['image'], sample['landmarks']
    
            # swap color axis because
            # numpy image: H x W x C
            # torch image: C X H X W
            image = image.transpose((2, 0, 1)) #把ndarray转换为tensor需要改变顺序
            return {'image': torch.from_numpy(image),
                    'landmarks': torch.from_numpy(landmarks)}
    

    Compose transforms

    利用torchvision.transforms.Compose可以帮助我们对一个图片进行多个操作

    scale = Rescale(256)
    crop = RandomCrop(128)
    composed = transforms.Compose([Rescale(256),
                                   RandomCrop(224)])
    
    # Apply each of the above transforms on sample.
    fig = plt.figure()
    sample = face_dataset[65]
    for i, tsfrm in enumerate([scale, crop, composed]):
        transformed_sample = tsfrm(sample)
    
        ax = plt.subplot(1, 3, i + 1)
        plt.tight_layout()
        ax.set_title(type(tsfrm).__name__)
        show_landmarks(**transformed_sample)
    
    plt.show()
    

    在这里插入图片描述
    在这里插入图片描述

    在这里插入图片描述

    数据集的迭代

    我们可以用 for ... in ... 来迭代数据集,但是这么做并不方便,因为很多时候训练神经网络是要分批和打乱顺序的torch.utils.data.DataLoader可以帮助我们完成这一个目标

    transformed_dataset = FaceLandmarksDataset(csv_file='data/faces/face_landmarks.csv',
                                               root_dir='data/faces/',
                                               transform=transforms.Compose([
                                                   Rescale(256),
                                                   RandomCrop(224),
                                                   ToTensor()
                                               ]))
    dataloader = DataLoader(transformed_dataset, batch_size=4,
                            shuffle=True, num_workers=0) #batch_size: batch的大小 shuffle=True表示顺序打乱
    
    def show_landmarks_batch(sample_batched):
        """Show image with landmarks for a batch of samples."""
        images_batch, landmarks_batch = 
                sample_batched['image'], sample_batched['landmarks']
        batch_size = len(images_batch)
        im_size = images_batch.size(2)
        grid_border_size = 2
    
        grid = utils.make_grid(images_batch) #为图片加入边框
        plt.imshow(grid.numpy().transpose((1, 2, 0)))
    
        for i in range(batch_size):
            plt.scatter(landmarks_batch[i, :, 0].numpy() + i * im_size + (i + 1) * grid_border_size, #既然图片加了边框,而且并排放置,所以我们需要把这部分加上去
                        landmarks_batch[i, :, 1].numpy() + grid_border_size,
                        s=10, marker='.', c='r')
    
            plt.title('Batch from dataloader')
    
    
    for i_batch, sample_batched in enumerate(dataloader):
        print(i_batch, sample_batched['image'].size(),
              sample_batched['landmarks'].size())
    
    
        if i_batch == 0:
            plt.figure()
            show_landmarks_batch(sample_batched)
            plt.axis('off')
            plt.ioff()
            plt.show()
            break
    
    0 torch.Size([4, 3, 224, 224]) torch.Size([4, 68, 2])
    224
    

    在这里插入图片描述

  • 相关阅读:
    jmeter BeanShell内置变量的基本使用
    自定义 resetCSS
    JavaScript + html 制作钟表
    JavaScript 实现放大镜效果
    JavaScript 实现拖拽
    JavaScript 阻止事件的默认行为
    JavaScript 事件冒泡
    JavaScript 鼠标事件、键盘事件
    JavaScript window.location
    JavaScript 中document.getElementsByClassName() 在ie8以下不兼容问题
  • 原文地址:https://www.cnblogs.com/MTandHJ/p/11175453.html
Copyright © 2020-2023  润新知