三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。
- 中文名
- 三角函数公式
- 外文名
- Formulas of trigonometric functions
- 适用领域
- 几何,代数变换,数学、物理、地理、天文等
- 应用学科
- 数学、物理、地理、天文地理等
锐角三角函数
|
任意角三角函数
| |
---|---|---|
图形
|
||
正弦(sin)
|
|
|
余弦(cos)
|
|
|
正切(tan或tg)
|
|
|
余切(cot或ctg)
|
|
|
正割(sec)
|
|
|
余割(csc)
|
|
|
表格参考资料来源:现代汉语词典 [1] .
倒数关系:①
;②
;③
。
商数关系:①
;②
。
平方关系:①
;②
;③
。
公式一:设
为任意角,终边相同的角的同一三角函数的值相等:
公式二:设
为任意角,
与
的三角函数值之间的关系:
公式三:任意角
与
的三角函数值之间的关系:
公式四:
与
的三角函数值之间的关系:
公式五:
与
的三角函数值之间的关系:
公式六:
及
与
的三角函数值之间的关系:
诱导公式口诀“奇变偶不变,符号看象限”意义:
k×π/2±a(k∈z)的三角函数值
(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;
(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。
记忆方法一:奇变偶不变,符号看象限:
奇变偶不变:其中的奇偶是指π/2的奇偶数倍,变与不变是指三角函数名称的变化,若变,则是正弦变余弦,正切变余切。
符号看象限:根据角的范围以及三角函数在哪个象限的正负,来判断新三角函数的符号。
记忆方法二:无论α是多大的角,都将α看成锐角.
若将α看成锐角(终边在第一象限),则π+α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值。这样,就得到了诱导公式二。
以诱导公式四为例:
若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负值。这样,就得到了诱导公式四。
诱导公式的应用:
运用诱导公式转化三角函数的一般步骤:
和差角公式
二角和差公式
三角和公式
和差化积公式
口诀:正加正,正在前,余加余,余并肩,正减正,余在前,余减余,负正弦.
积化和差公式
倍角公式
二倍角公式
三倍角公式
证明:
sin3a
=sin(a+2a)
=sin2a·cosa+cos2a·sina
=2sina(1-sin2a)+(1-2sin2a)sina
=3sina-4sin3a
cos3a
=cos(2a+a)
=cos2acosa-sin2asina
=(2cos2a-1)cosa-2(1-cos2a)cosa
=4cos3a-3cosa
sin3a
cos3a
上述两式相比可得:
tan3a
四倍角公式
sin4a=-4×[cosa·sina·(2×sin2a-1)]
cos4a=8cos4a-8cos2a+1
五倍角公式
n倍角公式
应用欧拉公式:
.
上式用于求n倍角的三角函数时,可变形为:
所以
其中,Re表示取实数部分,Im表示取虚数部分.而
所以
半角公式
(正负由
所在的象限决定)
万能公式
辅助角公式
证明:
由于
,显然
,且
故有:
正弦定理
详见词条:正弦定理
在任意△ABC中,角A、B、C所对的边长分别为a、b、c,三角形外接圆的半径为R.则有 [4] :
正弦定理变形可得:
余弦定理
详见词条:余弦定理
对于如图1所示的边长为a、b、c而相应角为α、β、γ的△ABC,有:
也可表示为:
降幂公式
sin²α=[1-cos(2α)]/2
cos²α=[1+cos(2α)]/2
tan²α=[1-cos(2α)]/[1+cos(2α)]
幂级数
c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞)
c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)
泰勒展开式
泰勒展开式又叫幂级数展开法
实用幂级数:
, (!!表示双阶乘)
在解初等三角函数时,只需记住公式便可轻松作答,在竞赛中,往往会用到与图像结合的方法求三角函数值、三角函数不等式、面积等等。 [5-6]
万能公式
傅里叶级数
傅里叶级数又称三角级数