题目意思很好懂。
暴力的想法是在已知的丑数中选出最小的,保存之,然后乘以2,3,5,7保存起来,这里要注意去重。不得不说其英文输出很坑爹。
代码如下:
#include <cstring> #include <cstdlib> #include <cstdio> #include <queue> #include <map> #include <iostream> #define MAXN 5850 using namespace std; int n, a[4] = {2, 3, 5 ,7}; long long ans[MAXN]; priority_queue<long long, vector<long long>, greater<long long> > q; map<long long,bool> mp; void pre() { int pos = 1, cnt = 0; q.push(pos); mp[1] = 1; while (1) { long long pos = q.top(); ans[++cnt] = pos; if (cnt >= 5842) { break; } q.pop(); for (int i = 0; i < 4; ++i) { if (!mp.count(pos*a[i])) { q.push(pos*a[i]); mp[pos*a[i]] = 1; } } } } int main() { pre(); while (scanf("%d", &n), n) { if (n % 10 == 1 && n%100 != 11) { printf("The %dst humble number is ", n); } else if (n % 10 == 2 && n%100!= 12) { printf("The %dnd humble number is ", n); } else if (n % 10 == 3 && n%100 != 13) { printf("The %drd humble number is ", n); } else { printf("The %dth humble number is ", n); } cout << ans[n] << "." << endl; } return 0; }
还有一种思想就是动态规划的思想,也是看了大牛的代码后知道的。定义4个伪指针p1, p2, p3, p4指向数组下标,分别表示的意思是在已知的丑数中,能够与2,3,5,7相乘的最小的数的下标。比如说已知第一个数是1,那么能够和2相乘的最小数就是1(p1指向其数组下标)了。同理,在已知2是由1*2得到后,就不能再用1*2来生成2了,因为这样没有意思,此时就p1就指向了2所在的下标了。每次新增加的丑数就是 Min(num[p1]*2, num[p2]*3, num[p3]*5, num[p4]*7) 了。
代码如下:
#include <cstdlib> #include <cstring> #include <cstdio> #include <algorithm> using namespace std; int dp[5850]; inline int Min(int a, int b, int c, int d) { return min(a, min(b, min(c, d))); } void DP() { int p1 = 1, p2 = 1, p3 = 1, p4 = 1; dp[1] = 1; for (int i = 2; i <= 5842; ++i) { dp[i] = Min(dp[p1]*2, dp[p2]*3, dp[p3]*5, dp[p4]*7); if (dp[i] == dp[p1]*2) { ++p1; } if (dp[i] == dp[p2]*3) { ++p2; } if (dp[i] == dp[p3]*5) { ++p3; } if (dp[i] == dp[p4]*7) { ++p4; } } } int main() { int n; DP(); while (scanf("%d", &n), n) { if (n % 10 == 1 && n%100 != 11) { printf("The %dst humble number is ", n); } else if (n % 10 == 2 && n%100!= 12) { printf("The %dnd humble number is ", n); } else if (n % 10 == 3 && n%100 != 13) { printf("The %drd humble number is ", n); } else { printf("The %dth humble number is ", n); } printf("%d.\n", dp[n]); } return 0; }