• HDU2049 不容易系列之(4)——考新郎 错排 不要用 long long


    不容易系列之(4)——考新郎

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 8373    Accepted Submission(s): 3155


    Problem Description

    国庆期间,省城HZ刚刚举行了一场盛大的集体婚礼,为了使婚礼进行的丰富一些,司仪临时想出了有一个有意思的节目,叫做"考新郎",具体的操作是这样的:


    首先,给每位新娘打扮得几乎一模一样,并盖上大大的红盖头随机坐成一排;
    然后,让各位新郎寻找自己的新娘.每人只准找一个,并且不允许多人找一个.
    最后,揭开盖头,如果找错了对象就要当众跪搓衣板...

    看来做新郎也不是容易的事情...

    假设一共有N对新婚夫妇,其中有M个新郎找错了新娘,求发生这种情况一共有多少种可能.
     

    Input

    输入数据的第一行是一个整数C,表示测试实例的个数,然后是C行数据,每行包含两个整数N和M(1<M<=N<=20)。
     

    Output

    对于每个测试实例,请输出一共有多少种发生这种情况的可能,每个实例的输出占一行。
     

    Sample Input
    2
    2 2
    3 2
     

    Sample Output
    1
    3
     
      long long 错啊错,有木有,改成__int64 A掉的有木有,LINUX 不能用 __int64 有木有。 
      言归正传,该题考的是一个错排公式。错排,即造成了最大的混乱度,没有一对是配对的。那么分析假设如下:
      A B C D E F G    设解为T[7],现在只考虑A与b连接的情况,其他情况一样的,那么假如B与a相连的话那么就相当于求解T[5],假设B不与a连接,那么就和B不与原本的b
      a  b c d e  f  g    不相连没有什么区别了,所以就相当于求解T[6]了。  所以就有公式 T[n]= ( n- 1 )* ( T[n- 1]+ T[n- 2] )。
      代码如下:
    #include <iostream>
    #include <cstdio>
    using namespace std;
    
    __int64 rec[21];
    
    __int64 zuhe( int n, int m )
    {
        __int64 a= 1;
        for( int i= 0; i< n; ++i )
        {
            a*= ( m- i );
            a/= ( i+ 1 );
        }
        return a;
    }
    
    int main(  )
    {
        rec[1]= 0, rec[2]= 1;
        for( int i= 3; i<= 20; ++i )
        {
            rec[i]= ( i- 1 )* ( rec[i- 1]+ rec[i- 2] );
        }
        int T;
        scanf( "%d", &T );
        while( T-- )
        {
            int m, n;
            scanf( "%d %d", &m, &n );
            printf( "%I64d\n", zuhe( n, m )* rec[n] );
        }
        return 0;
    }
    

  • 相关阅读:
    myeclipse的software updates菜单报配置错误的解决办法
    打造自己公司的myeclipse 笔记
    基于Spring可扩展Schema提供自定义配置支持(spring配置文件中 配置标签支持)
    帝国CMS 列表模版显示新闻正文
    IE、Firefox兼容form target当前页iframe,javascript动态创建表单对象form设置name属性
    oracle 创建表用户/空间/临时表空间设置用户默认表空间 为用户授权操作实例
    ORACLE 启动问题 LRM00109
    帝国CMS灵动标签e:loop的使用
    php5 配置pdo 查看PHP5扩展目录
    java 获取当前路径的三种方式。实测
  • 原文地址:https://www.cnblogs.com/Lyush/p/2124327.html
Copyright © 2020-2023  润新知