http://poj.org/problem?id=2440
题意是给出两种串,要求计算长度为L的,而且不含那两种子串的串的个数。
这个的做法主要是要靠状态转移,而且明白转移的技巧做这题就如鱼得水,轻松过了!长度为3的01串也就8种状态,如果我们把它编号了,以后添加一位的时候,根据最后三位,我们就可以从之前的装态将已统计的个数转移到现在当前这一层来。例如,0可以由0或4转移过来。
然后就可以简单的构造出矩阵来了!
代码如下:
View Code
1 #include <cstdio> 2 #include <cstring> 3 #include <cassert> 4 #include <algorithm> 5 6 using namespace std; 7 8 const int maxSize = 8; 9 const int initMod = 2E3 + 5; 10 int curSize = maxSize; 11 int curMod = initMod; 12 13 struct Matrix { 14 int val[maxSize][maxSize]; 15 16 Matrix(bool ONE = false) { 17 for (int i = 0; i < curSize; i++) { 18 for (int j = 0; j < curSize; j++) { 19 val[i][j] = 0; 20 } 21 if (ONE) val[i][i] = 1; 22 } 23 } 24 25 void print(int _l = curSize, int _w = curSize) { 26 for (int i = 0; i < _l; i++) { 27 for (int j = 0; j < _w; j++) { 28 if (j) putchar(' '); 29 printf("%d", val[i][j]); 30 } 31 puts(""); 32 } 33 puts("~~"); 34 } 35 }; 36 37 Matrix operator * (Matrix &_a, Matrix &_b) { 38 Matrix ret = Matrix(); 39 40 for (int i = 0; i < curSize; i++) { 41 for (int k = 0; k < curSize; k++) { 42 if (_a.val[i][k]) { 43 for (int j = 0; j < curSize; j++) { 44 ret.val[i][j] += _a.val[i][k] * _b.val[k][j]; 45 ret.val[i][j] %= curMod; 46 } 47 } 48 } 49 } 50 51 return ret; 52 } 53 54 Matrix operator ^ (Matrix &_a, int _p) { 55 Matrix __a = _a, ret = Matrix(true); 56 57 while (_p) { 58 if (_p & 1) { 59 ret = ret * __a; 60 } 61 __a = __a * __a; 62 _p >>= 1; 63 } 64 65 return ret; 66 } 67 68 int deal(int _n) { 69 Matrix Base = Matrix(), op = Matrix(); 70 71 Base.val[0][0] = Base.val[0][1] = 1; 72 for (int i = 0; i < 4; i++) { 73 op.val[i][i << 1] = op.val[i + 4][i << 1] = 1; 74 if (i != 2 && i != 3) op.val[i][i << 1 | 1] = op.val[i + 4][i << 1 | 1] = 1; 75 } 76 op = op ^ (_n - 1); 77 Base = Base * op; 78 // Base.print(); 79 // op.print(); 80 81 int sum = 0; 82 83 for (int i = 0; i < 8; i++) sum += Base.val[0][i], sum %= curMod; 84 85 return sum; 86 } 87 88 int main() { 89 int n; 90 91 while (~scanf("%d", &n)) printf("%d\n", deal(n)); 92 93 return 0; 94 }
hdu 2243的自动机的题跟这个差不多,应该也是这样先找到所有可行的串,然后再用所有情况减去。。。
——written by Lyon