• K-means算法


    K-means算法

    #include<iostream>
    #include<fstream>
    #include<stdlib.h>
    #include<math.h>
    
    using namespace std;
    
    #define K 4 /*数据维度*/
    #define C 8 /*聚类数*/
    #define N 150 /*样本数*/
    #define IterMax 5/*最大迭代数*/
    #define IterTherhold  0.0000001 /*结束条件*/
    
    /*样本数据*/
    typedef struct{
    	double p[K];
    	int Lable;
    	double dis[K];
    }Data;
    
    Data dat[N];
    double cluster[C][K] = {0.0};
    double oldfitness = 0.0;
    double fitness = 0.0;
    
    bool is_equal(int rand_num[], int n, int index) 
    {
    	for(int i = 0; i < n; i++) {
    		if(rand_num[i] == index) {
    			return true;
    		}
    	}
    	return false;
    }
    
    void input_data()
    {
    	ifstream in("test.data", ios::in);
    
    	int i = 0;
    	while(i < N) {
    		for(int k = 0; k < K; k++){
    			in >> dat[i].p[k];
    		}	
    		i++;
    	}
    }
    //初始化质心
    void Init_center()
    {
    	int rand_num[C] ={0} ;
    	int i = 0;
    	while(i < C) {
    		int index = rand()%N;
    		if(!is_equal(rand_num, i, index)) {
    			rand_num[i++] = index;
    		}
    	}
    	for(int i = 0; i < K ; i++) {
    		for(int j = 0; j < C; j++) {
    			cluster[j][i] = dat[rand_num[j]].p[i];
    		}
    	}
    }
    double Eulid_dis(int x, int y) {
    	double distance = 0.0;
    	for(int i = 0 ; i < K ; i++) {
    		distance += pow(dat[x].p[i] - cluster[y][i], 2);
    	}
    	distance = sqrt(distance);
    	return distance;
    }
    void Make_new_cluster()
    {
    	double bias = 0.0;
    	for(int i = 0; i < N; i++) {
    		double mindis = dat[i].dis[0];
    		dat[i].Lable = 0;
    		for(int j = 1; j < C; j++) {
    			if(mindis > dat[i].dis[j]) {
    				mindis = dat[i].dis[j];
    				dat[i].Lable = j;
    			}
    		}
    	}
    	for(int i = 0; i < N; i++) {
    		bias += dat[i].dis[dat[i].Lable];
    	}
    	
    	oldfitness = fitness;
    	fitness = bias;
    }
    void calculate_distance() 
    {
    	for(int i = 0; i < N; i++) {
    		for(int j = 0; j < C; j++) {
    			dat[i].dis[j] = Eulid_dis(i, j);
    		}
    	}
    }
    void Make_new_center()
    {
    	for(int i = 0; i < C; i++) {
    		for(int k = 0; k < K; k++) {
    			double tmp = 0.0;
    			int total = 0;
    			for(int j = 0; j < N; j++) {
    				if(dat[j].Lable == i) {
    					tmp += dat[j].p[k];
    					total++;
    				}
    			}
    			if(total > 0) {
    				cluster[i][k] = tmp/total;
    			}
    		}
    	}
    }
    /************************************
    *              主函数               *
    ************************************/
    int main()
    {
    	input_data();
    	Init_center();
    	int i = 0;
    	double differ = 1.0;
    	while(i < IterMax && differ > IterTherhold) {
    		calculate_distance(); 
    		Make_new_cluster();
    		Make_new_center();
    		differ = abs(oldfitness - fitness);
    		cout << fitness << endl;
    		i++;
    	}
    	for (int i = 0; i < C; ++i) {
    		for(int j = 0; j < K ; j++) {
    			cout << cluster[i][j] << "	";
    		}
    		cout << endl;
    	}
    	return 0;
    }
    

      

  • 相关阅读:
    基于Mybatis3.0.6的基本操作介绍
    正则验证邮箱格式是不是正确
    Linux_文件权限
    飘逸的python
    通过Fsharp探索Enterprise Library Exception
    Oracle学习——扫盲篇
    代码块练习题:看代码写程序的执行结果。
    代码块:在Java中用{}括起来的代码
    Java中如何使用帮助文档(API)
    Java如何制作帮助文档(API)
  • 原文地址:https://www.cnblogs.com/LyningCoder/p/4301087.html
Copyright © 2020-2023  润新知