• 推荐召回策略


    1. 概述

      召回是指从全量信息集合中触发尽可能多的正确结果,并将返回结果给“排序”;排序是对所有召回的内容进行打分排序,选出得分最高的几个结果推荐给用户。

    2. 召回策略

      常用的主要有协同过滤、向量化召回和深度树匹配模型。

      2.1 协同过滤

        协同过滤主要分为基于物品的协同过滤、基于用户的协同过滤和基于模型的协同过滤。

        ①基于物品的协同过滤

          给用户推荐那些和他们之前喜欢的物品相似的物品。

        ②基于用户的协同过滤

          当召回用户A的候选集时,可以先找到和他有相似兴趣的其他用户,然后把那些用户喜欢的、而用户A未交互的物品作为候选集。

        ③基于模型的协同过滤

          矩阵分解

        总结:协同过滤方法通过在用户历史行为里面找相似的物品和用户,保证了基础的相关性,但是并不能真正的面向全部商品库做检索,使得整个推荐结果的多样性和发现性比较差。

      2.2 向量化召回

        向量化召回时通过模型学习用户和物品的兴趣向量,并通过内积来计算用户和物品之间的相似度,从而得到最终的候选集。

        ①Youtube召回模型

          构建Pair对,计算相似度,取TopN。

        ②局部敏感哈希

          对原始数据空间中的向量进行Hash映射,得到Hash Table,使得原始数据空间中两个相邻向量通过相同的Hash变换后,被映射到同一个桶的概率很大,而不相邻的向量被映射到同一个桶的概率很小。所以在召回阶段,
        将所有的物品兴趣向量映射到不同的桶内,然后将用户兴趣向量映射到桶内,只需要将用户向量与该桶内的物品向量求内积即可。

        总结:向量召回化要求模型围绕着用户和向量的Embedding展开,同时在顶层进行呢及运算得到相似度。

      2.3 深度树匹配模型

        构建通用推荐算法框架,允许任意形式的模型,不限定形式,其核心是构造一棵兴趣树,叶子结点是全量的物品,每一层表示一种细分的兴趣。

    3. 参考博客

      https://www.jianshu.com/p/ef3caa5672c8

  • 相关阅读:
    HDU2045_LELE的RPG难题
    HDU2050_折线分割平面数
    HDU1159_最长公共子序列
    ASP.NET 页生命周期概述
    Hadoop编译
    .Hadoop NameNode单点问题解决方案之二 AvatarNode 部署
    Pig调试环境
    HADOOP综合应用架构之一 配置Secondarynamenode在另一台机器运行
    JAVA采用远程连接Hive
    Windows Server 2003 FTP服务器配置详解
  • 原文地址:https://www.cnblogs.com/LuckPsyduck/p/11986059.html
Copyright © 2020-2023  润新知