1. 推荐系统
1.1 总体框架
主要包括:样本选择、数据清洗、特征提取与选择、模型训练、在线预估和排序。
1.2 目的
帮助用户找到想要的商品,挖掘数据分布。
降低信息过载。
提高站点的点击率/转化率。
为用户提供定制化服务。
2. 推荐算法
基于流行度/协同过滤/基于内容/基于模型/多路混合
2.1 基于流行度算法
按照流行度/热度排序推荐给用户。
2.2 协同过滤算法
基于用户的协同过滤和基于物体的协同过滤。
基于用户的协同过滤:
1. 分析各个用户对item的评价;
2. 依据用户对item的评价计算得出所有用户之间的相似度;
3. 选出与当前用户最相似的N个用户;
4. 将这N个用户评价最高且当前用户又没有浏览过的item推荐给当前用户。
基于物品的协同过滤:
1. 分析各个用户对item的浏览纪录;
2. 依据浏览纪录分析得出所有item之间的相似度;
3. 对于当前用户评价高的item,选择与之相似度最高的N个item。
4. 将N个item推荐给用户。
2.3 基于内容算法
推荐与内容相似的item。
有效解决冷启动问题,但是会失去内容的多样性。
2.4 基于模型算法
常见深度学习、机器学习模型。
2.5 多路混合算法
多种推荐算法加权综合。
Time : 2019-10-11 14:14:52