• 洛谷 P2486 [SDOI2011]染色


    题目描述

    输入输出格式

    输入格式:

    输出格式:

    对于每个询问操作,输出一行答案。

    输入输出样例

    输入样例#1:
    6 5
    2 2 1 2 1 1
    1 2
    1 3
    2 4
    2 5
    2 6
    Q 3 5
    C 2 1 1
    Q 3 5
    C 5 1 2
    Q 3 5
    
    输出样例#1:
    3
    1
    2
    

    说明

    题目大意:给一棵树,要求支持链覆盖+查询链上颜色段数

    先考虑链上怎么做吧,颜色段数这个东西支持区间加,一个区间可以用三个属性表示:左端点的颜色,右端点的颜色,区间颜色段数

    两段合并以后的颜色段数是:左段颜色段数+右段颜色段数-(左段右端点颜色==右段左端点颜色)

    然后既然链上可以线段树,那树上直接树链剖分就好了

    注意一下这个区间加是不满足交换律的,要交换的话需要取反,树剖查询到最后的时候要分类讨论一下

      1 #include <iostream>
      2 #include <cstdlib>
      3 #include <cstdio>
      4 #include <algorithm>
      5 #include <string>
      6 #include <cstring>
      7 #include <cmath>
      8 #include <map>
      9 #include <stack>
     10 #include <set>
     11 #include <vector>
     12 #include <queue>
     13 #include <time.h>
     14 #define eps 1e-7
     15 #define INF 0x3f3f3f3f
     16 #define MOD 1000000007
     17 #define rep0(j,n) for(int j=0;j<n;++j)
     18 #define rep1(j,n) for(int j=1;j<=n;++j)
     19 #define pb push_back
     20 #define set0(n) memset(n,0,sizeof(n))
     21 #define ll long long
     22 #define ull unsigned long long
     23 #define iter(i,v) for(edge *i=head[v];i;i=i->nxt)
     24 #define max(a,b) (a>b?a:b)
     25 #define min(a,b) (a<b?a:b)
     26 #define print_runtime printf("Running time:%.3lfs
    ",double(clock())/1000.0)
     27 #define TO(j) printf(#j": %d
    ",j);
     28 //#define OJ
     29 using namespace std;
     30 const int MAXINT = 100010;
     31 const int MAXNODE = 100010;
     32 const int MAXEDGE = 2 * MAXNODE;
     33 char BUF, *buf;
     34 int read() {
     35     char c = getchar(); int f = 1, x = 0;
     36     while (!isdigit(c)) { if (c == '-') f = -1; c = getchar(); }
     37     while (isdigit(c)) { x = x * 10 + c - '0'; c = getchar(); }
     38     return f * x;
     39 }
     40 char get_ch() {
     41     char c = getchar();
     42     while (!isalpha(c)) c = getchar();
     43     return c;
     44 }
     45 //------------------- Head Files ----------------------//
     46 int c[MAXINT],cl[MAXINT];
     47 struct node {
     48     int lb, rb;
     49     node *l, *r;
     50     int num, lc, rc, tag;
     51     void color(int c) {
     52         num = 1;
     53         lc = rc = tag = c;
     54     }
     55     void pushdown() {
     56         if (tag) {
     57             l->color(tag); r->color(tag);
     58             tag = 0;
     59         }
     60     }
     61     void pushup() {
     62         lc = l->lc; rc = r->rc;
     63         num = l->num + r->num - (l->rc == r->lc);
     64     }
     65     node() {
     66         lb = rb = num = lc = rc = tag = 0;
     67     }
     68 };
     69 struct seg {
     70     int lc, rc, num;
     71     seg() {}
     72     seg(int _lc, int _rc, int _num) : lc(_lc), rc(_rc), num(_num) {}
     73 };
     74 seg add(seg a, seg b) {
     75     if (a.lc == -1) return b;
     76     if (b.lc == -1) return a;
     77     seg ans;
     78     ans.lc = a.lc;
     79     ans.rc = b.rc;
     80     ans.num = a.num + b.num - (a.rc == b.lc);
     81     return ans;
     82 }
     83 struct SegTree {
     84     node mp[MAXINT * 4];
     85     node *root;
     86     int _cnt;
     87     SegTree() {
     88         _cnt = 0;
     89     }
     90     node *newnode(int l, int r) {
     91         node *p = &mp[_cnt++];
     92         p->lb = l;
     93         p->rb = r;
     94         return p;
     95     }
     96     void maketree(int lb, int rb, node *&p) {
     97         p = newnode(lb, rb);
     98         if (rb - lb > 1) {
     99             maketree(lb, (lb + rb) / 2, p->l);
    100             maketree((lb + rb) / 2, rb, p->r);
    101             p->pushup();
    102         }
    103         else {
    104             p->lc = p->rc = c[lb];
    105             p->num = 1;
    106         }
    107     }
    108     void cover(int lb, int rb, int c, node *p) {
    109         if (lb >= p->rb || rb <= p->lb) return;
    110         if (lb <= p->lb && rb >= p->rb) { p->color(c); return; }
    111         p->pushdown();
    112         cover(lb, rb, c, p->l);
    113         cover(lb, rb, c, p->r);
    114         p->pushup();
    115     }
    116     seg query(int lb, int rb, node *p) {
    117         if (lb >= p->rb || rb <= p->lb) return seg(-1, -1, -1);
    118         if (lb <= p->lb && rb >= p->rb) return seg(p->lc, p->rc, p->num);
    119         p->pushdown();
    120         return add(query(lb, rb, p->l), query(lb, rb, p->r));
    121     }
    122 } st;
    123 int n, m, fa[MAXINT], sz[MAXINT], top[MAXINT], dfn[MAXINT], cnt_dfn = 1, dep[MAXINT], cnt;
    124 struct edge {
    125     int u, v;
    126     edge *nxt;
    127     edge() {}
    128     edge(int _u, int _v, edge *_nxt) : u(_u), v(_v), nxt(_nxt) {}
    129 } mp[MAXINT * 2], *head[MAXINT];
    130 void addedge(int u, int v) {
    131     mp[cnt] = edge(u, v, head[u]);
    132     head[u] = &mp[cnt++];
    133     mp[cnt] = edge(v, u, head[v]);
    134     head[v] = &mp[cnt++];
    135 }
    136 void dfs1(int p) {
    137     sz[p] = 1;
    138     iter(i, p) {
    139         if (i->v == fa[p])continue;
    140         fa[i->v] = p; dep[i->v] = dep[p] + 1;
    141         dfs1(i->v);
    142         sz[p] += sz[i->v];
    143     }
    144 }
    145 void dfs2(int p) {
    146     int mx = 0, gs = 0;
    147     dfn[p] = cnt_dfn++;
    148     iter(i, p) {
    149         if (i->v == fa[p]) continue;
    150         if (sz[i->v] > mx) {
    151             mx = sz[i->v];
    152             gs = i->v;
    153         }
    154     }
    155     if (gs == 0) return;
    156     top[gs] = top[p];
    157     dfs2(gs);
    158     iter(i, p) {
    159         if (i->v == fa[p] || i->v == gs) continue;
    160         top[i->v] = i->v;
    161         dfs2(i->v);
    162     }
    163 }
    164 seg trans(seg a) {
    165     return seg(a.rc, a.lc, a.num);
    166 }
    167 void modify(int l, int r, int c) {
    168     while (top[l] != top[r]) {
    169         if (dep[top[l]] > dep[top[r]]) {
    170             st.cover(dfn[top[l]], dfn[l]+1, c, st.root);
    171             l = fa[top[l]];
    172         }
    173         else {
    174             st.cover(dfn[top[r]], dfn[r]+1, c, st.root);
    175             r = fa[top[r]];
    176         }
    177     }
    178     st.cover(min(dfn[r], dfn[l]), max(dfn[r], dfn[l])+1, c, st.root);
    179 }
    180 int query(int l, int r) {
    181     seg ansl(-1, -1, -1), ansr(-1, -1, -1);
    182     while (top[l] != top[r]) {
    183         if (dep[top[l]] > dep[top[r]]) {
    184             ansl = add(st.query(dfn[top[l]], dfn[l]+1, st.root), ansl);
    185             l = fa[top[l]];
    186         }
    187         else {
    188             ansr = add(st.query(dfn[top[r]], dfn[r]+1, st.root), ansr);
    189             r = fa[top[r]];
    190         }
    191     }
    192     if (dep[l] > dep[r]) {
    193         ansl = add(trans(ansr), add(st.query(dfn[r], dfn[l]+1, st.root), ansl));
    194     }
    195     else {
    196         ansl = add(trans(ansl), add(st.query(dfn[l], dfn[r]+1, st.root), ansr));
    197     }
    198     return ansl.num;
    199 }
    200 void get_input();
    201 void work();
    202 int main() {
    203     get_input();
    204     work();
    205     return 0;
    206 }
    207 void work() {
    208     dfs1(1);
    209     dfs2(1);
    210     rep1(i, n) c[dfn[i]] = cl[i];
    211     st.maketree(1, n + 1, st.root);
    212     while (m--) {
    213         char op = get_ch();
    214         int u, v, c;
    215         if (op == 'C') {
    216             u = read(), v = read(), c = read();
    217             modify(u, v, c);
    218         }
    219         else {
    220             u = read(); v = read();
    221             printf("%d
    ", query(u, v));
    222         }
    223     }
    224 }
    225 void get_input() {
    226     n = read(); m = read();
    227     rep1(i, n) cl[i] = read();
    228     rep0(i, n - 1) {
    229         int u = read(), v = read();
    230         addedge(u, v);
    231     }
    232 }
  • 相关阅读:
    浅拷贝与深拷贝的实现方式、区别;deepcopy如果你来设计,如何实现(一)
    可变与不可变类型(一)
    查看虚拟机版本
    无法应用原保存的显示器配置
    uname -a输出内容分析
    Python 模块
    Python 函数(三)
    Python 函数(二)
    Python 函数(一)
    5-26 单词长度
  • 原文地址:https://www.cnblogs.com/LoveYayoi/p/6910649.html
Copyright © 2020-2023  润新知