一、堆排序介绍
堆排序(Heap Sort)是指利用堆这种数据结构所设计的一种排序算法。
我们知道,堆分为"最大堆"和"最小堆"。最大堆通常被用来进行"升序"排序,而最小堆通常被用来进行"降序"排序。
鉴于最大堆和最小堆是对称关系,理解其中一种即可。本文将对最大堆实现的升序排序进行详细说明。
最大堆进行升序排序的基本思想:
① 初始化堆:将数列a[1...n]构造成最大堆。
②
交换数据:将a[1]和a[n]交换,使a[n]是a[1...n]中的最大值;然后将a[1...n-1]重新调整为最大堆。
接着,将a[1]和a[n-1]交换,使a[n-1]是a[1...n-1]中的最大值;然后将a[1...n-2]重新调整为最大值。
依次类推,直到整个数列都是有序的。
下面,通过图文来解析堆排序的实现过程。注意实现中用到了"数组实现的二叉堆的性质"。
在第一个元素的索引为 0 的情形中:
性质一:索引为i的左孩子的索引是 (2*i+1);
性质二:索引为i的左孩子的索引是 (2*i+2);
性质三:索引为i的父结点的索引是 floor((i-1)/2);
例如,对于最大堆{110,100,90,40,80,20,60,10,30,50,70}而言:索引为0的左孩子的所有是1;索引为0的右孩子是2;索引为8的父节点是3。
堆排序(升序)代码
1 /*
2 * (最大)堆的向下调整算法
3 *
4 * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
5 * 其中,N为数组下标索引值,如数组中第1个数对应的N为0。
6 *
7 * 参数说明:
8 * a -- 待排序的数组
9 * start -- 被下调节点的起始位置(一般为0,表示从第1个开始)
10 * end -- 截至范围(一般为数组中最后一个元素的索引)
11 */
12 void maxheap_down(int a[], int start, int end)
13 {
14 int c = start; // 当前(current)节点的位置
15 int l = 2*c + 1; // 左(left)孩子的位置
16 int tmp = a[c]; // 当前(current)节点的大小
17 for (; l <= end; c=l,l=2*l+1)
18 {
19 // "l"是左孩子,"l+1"是右孩子
20 if ( l < end && a[l] < a[l+1])
21 l++; // 左右两孩子中选择较大者,即m_heap[l+1]
22 if (tmp >= a[l])
23 break; // 调整结束
24 else // 交换值
25 {
26 a[c] = a[l];
27 a[l]= tmp;
28 }
29 }
30 }
31
32 /*
33 * 堆排序(从小到大)
34 *
35 * 参数说明:
36 * a -- 待排序的数组
37 * n -- 数组的长度
38 */
39 void heap_sort_asc(int a[], int n)
40 {
41 int i;
42
43 // 从(n/2-1) --> 0逐次遍历。遍历之后,得到的数组实际上是一个(最大)二叉堆。
44 for (i = n / 2 - 1; i >= 0; i--)
45 maxheap_down(a, i, n-1);
46
47 // 从最后一个元素开始对序列进行调整,不断的缩小调整的范围直到第一个元素
48 for (i = n - 1; i > 0; i--)
49 {
50 // 交换a[0]和a[i]。交换后,a[i]是a[0...i]中最大的。
51 swap(a[0], a[i]);
52 // 调整a[0...i-1],使得a[0...i-1]仍然是一个最大堆。
53 // 即,保证a[i-1]是a[0...i-1]中的最大值。
54 maxheap_down(a, 0, i-1);
55 }
56 }
heap_sort_asc(a, n)的作用是:对数组a进行升序排序;其中,a是数组,n是数组长度。
heap_sort_asc(a, n)的操作分为两部分:初始化堆 和 交换数据。
maxheap_down(a, start, end)是最大堆的向下调整算法。
下面演示heap_sort_asc(a, n)对a={20,30,90,40,70,110,60,10,100,50,80}, n=11进行堆排序过程。下面是数组a对应的初始化结构:
1 初始化堆
在堆排序算法中,首先要将待排序的数组转化成二叉堆。
下面演示将数组{20,30,90,40,70,110,60,10,100,50,80}转换为最大堆{110,100,90,40,80,20,60,10,30,50,70}的步骤。
1.1 i=11/2-1,即i=4
上面是maxheap_down(a, 4, 9)调整过程。maxheap_down(a, 4, 9)的作用是将a[4...9]进行下调;a[4]的左孩子是a[9],右孩子是a[10]。调整时,选择左右孩子中较大的一个(即a[10])和a[4]交换。
1.2 i=3
上面是maxheap_down(a, 3, 9)调整过程。maxheap_down(a, 3, 9)的作用是将a[3...9]进行下调;a[3]的左孩子是a[7],右孩子是a[8]。调整时,选择左右孩子中较大的一个(即a[8])和a[4]交换。
1.3 i=2
上面是maxheap_down(a, 2, 9)调整过程。maxheap_down(a, 2, 9)的作用是将a[2...9]进行下调;a[2]的左孩子是a[5],右孩子是a[6]。调整时,选择左右孩子中较大的一个(即a[5])和a[2]交换。
1.4 i=1
上面是maxheap_down(a,
1, 9)调整过程。maxheap_down(a, 1,
9)的作用是将a[1...9]进行下调;a[1]的左孩子是a[3],右孩子是a[4]。调整时,选择左右孩子中较大的一个(即a[3])和a[1]交换。交换之后,a[3]为30,它比它的右孩子a[8]要大,接着,再将它们交换。
1.5 i=0
上面是maxheap_down(a,
0, 9)调整过程。maxheap_down(a, 0,
9)的作用是将a[0...9]进行下调;a[0]的左孩子是a[1],右孩子是a[2]。调整时,选择左右孩子中较大的一个(即a[2])和a[0]交换。交换之后,a[2]为20,它比它的左右孩子要大,选择较大的孩子(即左孩子)和a[2]交换。
调整完毕,就得到了最大堆。此时,数组{20,30,90,40,70,110,60,10,100,50,80}也就变成了{110,100,90,40,80,20,60,10,30,50,70}。
第2部分 交换数据
在将数组转换成最大堆之后,接着要进行交换数据,从而使数组成为一个真正的有序数组。
交换数据部分相对比较简单,下面仅仅给出将最大值放在数组末尾的示意图。
上面是当n=10时,交换数据的示意图。
当n=10时,首先交换a[0]和a[10],使得a[10]是a[0...10]之间的最大值;然后,调整a[0...9]使它称为最大堆。交换之后:a[10]是有序的!
当n=9时, 首先交换a[0]和a[9],使得a[9]是a[0...9]之间的最大值;然后,调整a[0...8]使它称为最大堆。交换之后:a[9...10]是有序的!
...
依此类推,直到a[0...10]是有序的。
二、堆排序的时间复杂度和稳定性
堆排序时间复杂度
堆排序的时间复杂度是O(N*lgN)。
假设被排序的数列中有N个数。遍历一趟的时间复杂度是O(N),需要遍历多少次呢?
堆排序是采用的二叉堆进行排序的,二叉堆就是一棵二叉树,它需要遍历的次数就是二叉树的深度,而根据完全二叉树的定义,它的深度至少是lg(N+1)。最多是多少呢?由于二叉堆是完全二叉树,因此,它的深度最多也不会超过lg(2N)。因此,遍历一趟的时间复杂度是O(N),而遍历次数介于lg(N+1)和lg(2N)之间;因此得出它的时间复杂度是O(N*lgN)。
堆排序稳定性
堆排序是不稳定的算法,它不满足稳定算法的定义。它在交换数据的时候,是比较父结点和子节点之间的数据,所以,即便是存在两个数值相等的兄弟节点,它们的相对顺序在排序也可能发生变化。
算法稳定性 -- 假设在数列中存在a[i]=a[j],若在排序之前,a[i]在a[j]前面;并且排序之后,a[i]仍然在a[j]前面。则这个排序算法是稳定的!
三、堆排序的C++实现
1 /**
2 * 堆排序:C++
3 *
4 * @author skywang
5 * @date 2014/03/11
6 */
7
8 #include <iostream>
9 using namespace std;
10
11 /*
12 * (最大)堆的向下调整算法
13 *
14 * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
15 * 其中,N为数组下标索引值,如数组中第1个数对应的N为0。
16 *
17 * 参数说明:
18 * a -- 待排序的数组
19 * start -- 被下调节点的起始位置(一般为0,表示从第1个开始)
20 * end -- 截至范围(一般为数组中最后一个元素的索引)
21 */
22 void maxHeapDown(int* a, int start, int end)
23 {
24 int c = start; // 当前(current)节点的位置
25 int l = 2*c + 1; // 左(left)孩子的位置
26 int tmp = a[c]; // 当前(current)节点的大小
27 for (; l <= end; c=l,l=2*l+1)
28 {
29 // "l"是左孩子,"l+1"是右孩子
30 if ( l < end && a[l] < a[l+1])
31 l++; // 左右两孩子中选择较大者,即m_heap[l+1]
32 if (tmp >= a[l])
33 break; // 调整结束
34 else // 交换值
35 {
36 a[c] = a[l];
37 a[l]= tmp;
38 }
39 }
40 }
41
42 /*
43 * 堆排序(从小到大)
44 *
45 * 参数说明:
46 * a -- 待排序的数组
47 * n -- 数组的长度
48 */
49 void heapSortAsc(int* a, int n)
50 {
51 int i,tmp;
52
53 // 从(n/2-1) --> 0逐次遍历。遍历之后,得到的数组实际上是一个(最大)二叉堆。
54 for (i = n / 2 - 1; i >= 0; i--)
55 maxHeapDown(a, i, n-1);
56
57 // 从最后一个元素开始对序列进行调整,不断的缩小调整的范围直到第一个元素
58 for (i = n - 1; i > 0; i--)
59 {
60 // 交换a[0]和a[i]。交换后,a[i]是a[0...i]中最大的。
61 tmp = a[0];
62 a[0] = a[i];
63 a[i] = tmp;
64 // 调整a[0...i-1],使得a[0...i-1]仍然是一个最大堆。
65 // 即,保证a[i-1]是a[0...i-1]中的最大值。
66 maxHeapDown(a, 0, i-1);
67 }
68 }
69
70 /*
71 * (最小)堆的向下调整算法
72 *
73 * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
74 * 其中,N为数组下标索引值,如数组中第1个数对应的N为0。
75 *
76 * 参数说明:
77 * a -- 待排序的数组
78 * start -- 被下调节点的起始位置(一般为0,表示从第1个开始)
79 * end -- 截至范围(一般为数组中最后一个元素的索引)
80 */
81 void minHeapDown(int* a, int start, int end)
82 {
83 int c = start; // 当前(current)节点的位置
84 int l = 2*c + 1; // 左(left)孩子的位置
85 int tmp = a[c]; // 当前(current)节点的大小
86 for (; l <= end; c=l,l=2*l+1)
87 {
88 // "l"是左孩子,"l+1"是右孩子
89 if ( l < end && a[l] > a[l+1])
90 l++; // 左右两孩子中选择较小者
91 if (tmp <= a[l])
92 break; // 调整结束
93 else // 交换值
94 {
95 a[c] = a[l];
96 a[l]= tmp;
97 }
98 }
99 }
100
101 /*
102 * 堆排序(从大到小)
103 *
104 * 参数说明:
105 * a -- 待排序的数组
106 * n -- 数组的长度
107 */
108 void heapSortDesc(int* a, int n)
109 {
110 int i,tmp;
111
112 // 从(n/2-1) --> 0逐次遍历每。遍历之后,得到的数组实际上是一个最小堆。
113 for (i = n / 2 - 1; i >= 0; i--)
114 minHeapDown(a, i, n-1);
115
116 // 从最后一个元素开始对序列进行调整,不断的缩小调整的范围直到第一个元素
117 for (i = n - 1; i > 0; i--)
118 {
119 // 交换a[0]和a[i]。交换后,a[i]是a[0...i]中最小的。
120 tmp = a[0];
121 a[0] = a[i];
122 a[i] = tmp;
123 // 调整a[0...i-1],使得a[0...i-1]仍然是一个最小堆。
124 // 即,保证a[i-1]是a[0...i-1]中的最小值。
125 minHeapDown(a, 0, i-1);
126 }
127 }
128
129 int main()
130 {
131 int i;
132 int a[] = {20,30,90,40,70,110,60,10,100,50,80};
133 int ilen = (sizeof(a)) / (sizeof(a[0]));
134
135 cout << "before sort:";
136 for (i=0; i<ilen; i++)
137 cout << a[i] << " ";
138 cout << endl;
139
140 heapSortAsc(a, ilen); // 升序排列
141 //heapSortDesc(a, ilen); // 降序排列
142
143 cout << "after sort:";
144 for (i=0; i<ilen; i++)
145 cout << a[i] << " ";
146 cout << endl;
147
148 return 0;
149 }