• TensorFlow keras 迁移学习


     

     

     

     

     

    数据的读取

    import tensorflow as tf
    from tensorflow.python import keras
    from tensorflow.python.keras.preprocessing.image import ImageDataGenerator
    
    class TransferModel(object):
    
        def __init__(self):
            #标准化和数据增强
            self.train_generator = ImageDataGenerator(rescale=1.0/255.0)
            self.test_generator = ImageDataGenerator(rescale=1.0/255.0)
            #指定训练集数据和测试集数据目录
            self.train_dir = "./data/train"
            self.test_dir = "./data/test"
            self.image_size = (224,224)
            self.batch_size = 32
    
        def get_loacl_data(self):
            '''
            读取本地的图片数据以及类别
            :return: 
            '''
            train_gen = self.train_generator.flow_from_directory(self.train_dir,
                                                     target_size=self.image_size,
                                                     batch_size=self.batch_size,
                                                     class_mode='binary',
                                                     shuffle=True)
            test_gen = self.test_generator.flow_from_directory(self.test_dir,
                                                               target_size=self.image_size,
                                                               batch_size=self.batch_size,
                                                               class_mode='binary',
                                                               shuffle=True)
    
    
            return train_gen,test_gen
    
    if __name__ == '__main__':
        tm = TransferModel()
        train_gen,test_gen = tm.get_loacl_data()
        print(train_gen)
    

      迁移学习完整代码

    import tensorflow as tf
    from tensorflow.python import keras
    from tensorflow.python.keras.preprocessing.image import ImageDataGenerator, load_img, img_to_array
    from tensorflow.python.keras.applications.vgg16 import VGG16, preprocess_input
    import numpy as np
    
    
    class TransferModel(object):
    
        def __init__(self):
    
            # 定义训练和测试图片的变化方法,标准化以及数据增强
            self.train_generator = ImageDataGenerator(rescale=1.0 / 255.0)
            self.test_generator = ImageDataGenerator(rescale=1.0 / 255.0)
    
            # 指定训练数据和测试数据的目录
            self.train_dir = "./data/train"
            self.test_dir = "./data/test"
    
            # 定义图片训练相关网络参数
            self.image_size = (224, 224)
            self.batch_size = 32
    
            # 定义迁移学习的基类模型
            # 不包含VGG当中3个全连接层的模型加载并且加载了参数
            # vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5
            self.base_model = VGG16(weights='imagenet', include_top=False)
    
            self.label_dict = {
                '0': '汽车',
                '1': '恐龙',
                '2': '大象',
                '3': '花',
                '4': '马'
            }
    
        def get_local_data(self):
            """
            读取本地的图片数据以及类别
            :return: 训练数据和测试数据迭代器
            """
            # 使用flow_from_derectory
            train_gen = self.train_generator.flow_from_directory(self.train_dir,
                                                                 target_size=self.image_size,
                                                                 batch_size=self.batch_size,
                                                                 class_mode='binary',
                                                                 shuffle=True)
            test_gen = self.test_generator.flow_from_directory(self.test_dir,
                                                               target_size=self.image_size,
                                                               batch_size=self.batch_size,
                                                               class_mode='binary',
                                                               shuffle=True)
            return train_gen, test_gen
    
        def refine_base_model(self):
            """
            微调VGG结构,5blocks后面+全局平均池化(减少迁移学习的参数数量)+两个全连接层
            :return:
            """
            # 1、获取原notop模型得出
            # [?, ?, ?, 512]
            x = self.base_model.outputs[0]
    
            # 2、在输出后面增加我们结构
            # [?, ?, ?, 512]---->[?, 1 * 1 * 512]
            x = keras.layers.GlobalAveragePooling2D()(x)
    
            # 3、定义新的迁移模型
            x = keras.layers.Dense(1024, activation=tf.nn.relu)(x)
            y_predict = keras.layers.Dense(5, activation=tf.nn.softmax)(x)
    
            # model定义新模型
            # VGG 模型的输入, 输出:y_predict
            transfer_model = keras.models.Model(inputs=self.base_model.inputs, outputs=y_predict)
    
            return transfer_model
    
        def freeze_model(self):
            """
            冻结VGG模型(5blocks)
            冻结VGG的多少,根据你的数据量
            :return:
            """
            # self.base_model.layers 获取所有层,返回层的列表
            for layer in self.base_model.layers:
                layer.trainable = False
    
        def compile(self, model):
            """
            编译模型
            :return:
            """
            model.compile(optimizer=keras.optimizers.Adam(),
                          loss=keras.losses.sparse_categorical_crossentropy,
                          metrics=['accuracy'])
            return None
    
        def fit_generator(self, model, train_gen, test_gen):
            """
            训练模型,model.fit_generator()不是选择model.fit()
            :return:
            """
            # 每一次迭代准确率记录的h5文件
            modelckpt = keras.callbacks.ModelCheckpoint('./ckpt/transfer_{epoch:02d}-{val_acc:.2f}.h5',
                                                         monitor='val_acc',
                                                         save_weights_only=True,
                                                         save_best_only=True,
                                                         mode='auto',
                                                         period=1)
    
            model.fit_generator(train_gen, epochs=3, validation_data=test_gen, callbacks=[modelckpt])
    
            return None
    
        def predict(self, model):
            """
            预测类别
            :return:
            """
    
            # 加载模型,transfer_model
            model.load_weights("./ckpt/transfer_02-0.93.h5")
    
            # 读取图片,处理
            image = load_img("./1.jpg", target_size=(224, 224))
            image.show()
            image = img_to_array(image)
            # print(image.shape)
            # 四维(224, 224, 3)---》(1, 224, 224, 3)
            img = image.reshape([1, image.shape[0], image.shape[1], image.shape[2]])
            # print(img)
            # model.predict()
    
            # 预测结果进行处理
            image = preprocess_input(img)
            predictions = model.predict(image)
            print(predictions)
            res = np.argmax(predictions, axis=1)
            print("所预测的类别是:",self.label_dict[str(res[0])])
    
    
    if __name__ == '__main__':
        tm = TransferModel()
        # 训练
        # train_gen, test_gen = tm.get_local_data()
        # # print(train_gen)
        # # for data in train_gen:
        # #     print(data[0].shape, data[1].shape)
        # # print(tm.base_model.summary())
        # model = tm.refine_base_model()
        # # print(model)
        # tm.freeze_model()
        # tm.compile(model)
        #
        # tm.fit_generator(model, train_gen, test_gen)
    
        # 测试
        model = tm.refine_base_model()
    
        tm.predict(model)
    

      

    多思考也是一种努力,做出正确的分析和选择,因为我们的时间和精力都有限,所以把时间花在更有价值的地方。
  • 相关阅读:
    android05
    android xutils
    android service
    ios 开源代码
    java读properties的通用类,兼容linux和windows
    android adb shell
    清除mysql表中数据
    针对系统中磁盘IO负载过高的指导性操作
    MySQL出现Waiting for table metadata lock的场景浅析
    Sysstat的工具集sar、 iostat、mpstat、sadf、sar、sadc
  • 原文地址:https://www.cnblogs.com/LiuXinyu12378/p/12267402.html
Copyright © 2020-2023  润新知