• K-means之亚洲杯


    import numpy as np
    import xlrd
    from sklearn.cluster import KMeans
    from sklearn import preprocessing
    #胜 平 负 进球 失球 控球率 传球成功率 抢断成功率 射正
    # =============================================================================
    # data=[[1,1,0,3,1,65.5,77.6,53.8,3,4],[1,0,1,4,3,34.5,57.4,50,2,3],[1,0,1,2,4,41.8,60.5,85.7,2,3],[0,1,1,1,2,58.2,70.8,50,3,1],
    #       [2,0,0,3,0,34.8,70.3,64.3,4,6],[1,0,1,3,1,68,85.2,50,6,3],[0,1,1,0,2,65.2,79.8,50,2,1],[0,1,1,0,3,32,69.9,66.7,0,1],
    #       [2,0,0,5,1,54.9,77.2,61.5,7,6],[2,0,0,2,0,70.9,87.6,61.1,7,6],[0,0,2,1,3,29.1,67.5,52.9,2,0],[0,0,2,0,4,45.1,69.8,91.7,1,0],
    #       [2,0,0,7,0,68,83.7,68.8,5,6],[2,0,0,6,2,61.8,88.2,70.6,5,6],[0,0,2,2,5,32,65.5,50,2,0],[0,0,2,0,8,38.2,79.5,90.9,2,0],
    #       [2,0,0,6,0,69.5,87.8,81.2,7,6],[2,0,0,8,0,64,84.9,71.4,6,6],[0,0,2,0,10,36,78.3,53.8,0,0],[0,0,2,0,4,30.5,71.5,53.3,0,0],
    #       [2,0,0,4,2,62.6,81.5,63.6,7,6],[1,0,0,2,1,40,78.7,64.7,3,6],[0,0,1,2,3,30.1,68.8,50,4,0],[0,0,2,1,3,37.4,72.1,80,1,0]]
    # =============================================================================
    def xlrd_read_data(path):
        table = xlrd.open_workbook(path).sheets()[0] #读取第一个表格
        row = table.nrows  # 行数
        col = table.ncols  # 列数
        datamatrix = np.zeros((row, col))#生成一个nrows行ncols列,且元素均为0的初始矩阵
        for x in range(col):
            cols = np.matrix(table.col_values(x))  # 把list转换为矩阵进行矩阵操作
            datamatrix[:, x] = cols # 按列把数据存进矩阵中
        return datamatrix
    def standardScaler(datamatrix):
        #标准化
        scaler=preprocessing.StandardScaler().fit(datamatrix)
        return (scaler.transform(datamatrix))
    def kmeans(data_stand):
        estimator = KMeans(n_clusters=3) #聚为三类球队,构造聚类器    
        estimator.fit(data_stand)#聚类    
        label_pred = estimator.labels_#获取聚类标签
        centroids = estimator.cluster_centers_#获取聚类中心    
        inertia = estimator.inertia_ #获取聚类准则的总和
        dis=estimator.precompute_distances
        print(dis,inertia,centroids)
        return label_pred
    path = r'c:UsersLiugengxinDesktop亚洲杯.xlsx'
    data=xlrd_read_data(path)
    data_stand=standardScaler(data) #获得标准化数据
    label_pred=kmeans(data_stand)
    # =============================================================================
    # team=[['阿联酋'],['印度'],['泰国'],['巴林'],
    #       ['约旦'],['澳大利亚'],['叙利亚'],['巴勒斯坦'],
    #       ['中国'],['韩国'],['吉尔吉斯斯坦'],['菲律宾'],
    #       ['伊朗'],['伊拉克'],['越南'],['也门'],
    #       ['沙特'],['卡塔尔'],['朝鲜'],['黎巴嫩'],
    #       ['日本'],['乌兹别克斯坦'],['土库曼斯坦'],['阿曼']]
    # =============================================================================
    team=[['阿联酋'],['印度'],['泰国'],['巴林'],
          ['约旦'],['澳大利亚'],['叙利亚'],['巴勒斯坦'],
          ['中国'],['韩国'],['吉尔吉斯斯坦'],['菲律宾'],
          ['伊朗'],['伊拉克'],['越南'],['也门']]
    clustering_predict = np.column_stack((team,label_pred))#合并
    first = clustering_predict[12][1]#一流
    third = clustering_predict[15][1]#三流
    
    for i in range(len(team)):
            if clustering_predict[i][1]==first:clustering_predict[i][1]='亚洲一流'
            elif clustering_predict[i][1]==third:clustering_predict[i][1]='亚洲三流'
            else :clustering_predict[i][1]='亚洲二流'
  • 相关阅读:
    【Oracle】DG中 Switchover 主、备切换
    【Oracle】搭建DG(DataGuard)
    【Oracle】RAC集群中的命令
    【Oracle】RAC控制文件多路复用
    【Oracle】ORA-00054: resource busy and acquire with NOWAIT specified or timeout expired
    【Oracle】DBMS_STATS.GATHER_TABLE_STATS分析表
    【Oracle】ORA-38171: Insufficient privileges for SQL management object operation
    【Oracle】ORA-55610: Invalid DDL statement on history-tracked table
    【Oracle】三种方式查看SQL语句的执行计划
    【Oracle】ORA-01157: cannot identify/lock data file 201
  • 原文地址:https://www.cnblogs.com/Liu269393/p/10284359.html
Copyright © 2020-2023  润新知