下面是“分数”模运算的定义: b, m互质 k = a/b (mod m) <=> kb = a (mod m) 这里求 x = 1/17 (mod 2668) <=> 17x = 1 (mod 2668) <=> 17x = 2668k + 1 (k∈整数) 取合适的k使得17|(2668k+1) 这里刚好17 | (2668 + 1) 所以k = 1, x = (2668+1)/17 = 157 当然,当k = 1 + 17n 时, x = (2668 + 17·n·2668 + 1)/17 = 157 + 2668n 也符合条件(n任意整数) 但如果限定 2668 > x > 0,x是唯一的。