LeetCode:Distinct Subsequences
Given a string S and a string T, count the number of distinct subsequences of T in S.
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE"
is a subsequence of "ABCDE"
while "AEC"
is not).
Here is an example:
S = "rabbbit"
, T = "rabbit"
Return 3
.
题目大意:删除S中某些位置的字符可以得到T,总共有几种不同的删除方法
设S的长度为lens,T的长度为lent
算法1:递归解法,首先,从个字符串S的尾部开始扫描,找到第一个和T最后一个字符相同的位置k,那么有下面两种匹配:a. T的最后一个字符和S[k]匹配,b. T的最后一个字符不和S[k]匹配。a相当于子问题:从S[0...lens-2]中删除几个字符得到T[0...lent-2],b相当于子问题:从S[0...lens-2]中删除几个字符得到T[0...lent-1]。那么总的删除方法等于a、b两种情况的删除方法的和。递归解法代码如下,但是通过大数据会超时:
1 class Solution { 2 public: 3 int numDistinct(string S, string T) { 4 // IMPORTANT: Please reset any member data you declared, as 5 // the same Solution instance will be reused for each test case. 6 return numDistanceRecur(S, S.length()-1, T, T.length()-1); 7 } 8 int numDistanceRecur(string &S, int send, string &T, int tend) 9 { 10 if(tend < 0)return 1; 11 else if(send < 0)return 0; 12 while(send >= 0 && S[send] != T[tend])send--; 13 if(send < 0)return 0; 14 return numDistanceRecur(S,send-1,T,tend-1) + numDistanceRecur(S,send-1,T,tend); 15 } 16 };
算法2:动态规划,设dp[i][j]是从字符串S[0...i]中删除几个字符得到字符串T[0...j]的不同的删除方法种类,有上面递归的分析可知,动态规划方程如下
- 如果S[i] = T[j], dp[i][j] = dp[i-1][j-1]+dp[i-1][j]
- 如果S[i] 不等于 T[j], dp[i][j] = dp[i-1][j]
- 初始条件:当T为空字符串时,从任意的S删除几个字符得到T的方法为1
代码如下: 本文地址
1 class Solution { 2 public: 3 int numDistinct(string S, string T) { 4 // IMPORTANT: Please reset any member data you declared, as 5 // the same Solution instance will be reused for each test case. 6 int lens = S.length(), lent = T.length(); 7 if(lent == 0)return 1; 8 else if(lens == 0)return 0; 9 int dp[lens+1][lent+1]; 10 memset(dp, 0 , sizeof(dp)); 11 for(int i = 0; i <= lens; i++)dp[i][0] = 1; 12 for(int i = 1; i <= lens; i++) 13 { 14 for(int j = 1; j <= lent; j++) 15 { 16 if(S[i-1] == T[j-1]) 17 dp[i][j] = dp[i-1][j-1]+dp[i-1][j]; 18 else dp[i][j] = dp[i-1][j]; 19 } 20 } 21 return dp[lens][lent]; 22 } 23 };
【版权声明】转载请注明出处:http://www.cnblogs.com/TenosDoIt/p/3440022.html