本文介绍了字符串匹配算法中的BF算法和KMP算法。本文中KMP算法介绍部分是关于KMP算法相关文章中最简洁的一篇文章之一。下一篇将继续介绍Horspool算法和BM算法。
现在我们用的大部分软件都含有查找/替换的功能,要完成查找替换功能就需要用到字符串匹配算法。字符串匹配的算法有很多,最著名的字符串匹配算法有:KMP算法,Boyer-Moore(BM)算法。如果要我们自己去实现字符串匹配功能,我们会怎样去做呢?当然,我们最容易想到的方法就是人们常说的蛮力匹配法。
术语:
模式串:即你要查找或替换的字符串。
源串/匹配串:你要从哪里查找或者替换哪里的字符串。
比如你想在test.txt中查找是否含有linux-code这个单词,那么模式串即为linux-code,源串/匹配串即为test.txt内的字符串。
现在我们就来谈谈如何从源串中匹配模式串吧!
算法一:Brute Force算法,即蛮力匹配法。
判断一个字符串是否为另一个字符串的子串,最简单的方法就是将模式串与源串一个个字符比较,如果不相等则将模式串后移一位,继续比较。如此,直到子串完全匹配或者到达源字符串的末尾。代码也很简洁,几行就搞定。当然,其效率也是很低下的。
int bf_match(char *src,char *pattern){
if(src==NULL || pattern ==NULL)
return 0;
int len1=strlen(src);
int len2=strlen(pattern);
int i,j;
for(i=0;i<len1;++i)
for(j=0;j<len2;++j) {
if(src[i+j]!=pattern[j])
break;
if(j==len2-1)
reurn i;
}
return -1; //没有匹配成功,返回-1
}
当然还有很多蛮力算法的改进算法,我们这里不做进一步讨论。
算法二:KMP算法
曾经,KMP算法很让人头痛!是三个牛X哄哄的人提出来的。因此,我们第一眼看去,该算法并不好理解。关于KMP算法的阮一峰的这篇文章,是我看到过的写得最精炼简洁的一篇。原文摘录如下(原作者:阮一峰)。
来听听,KMP算法是怎么实现的吧!
举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD"?
1.
首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较。因为B与A不匹配,所以搜索词后移一位。
2.
因为B与A不匹配,搜索词再往后移。
3.
就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止。
4.
接着比较字符串和搜索词的下一个字符,还是相同。
5.
直到字符串有一个字符,与搜索词对应的字符不相同为止。
6.
这时,最自然的反应是,将搜索词整个后移一位,再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把"搜索位置"移到已经比较过的位置,重比一遍。
7.
一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是"ABCDAB"。KMP算法的想法是,设法利用这个已知信息,不要把"搜索位置"移回已经比较过的位置,继续把它向后移,这样就提高了效率。
8.
怎么做到这一点呢?可以针对搜索词,算出一张《部分匹配表》(Partial Match Table)。这张表是如何产生的,后面再介绍,这里只要会用就可以了。
9.
已知空格与D不匹配时,前面六个字符"ABCDAB"是匹配的。查表可知,最后一个匹配字符B对应的"部分匹配值"为2,因此按照下面的公式算出向后移动的位数:
移动位数 = 已匹配的字符数 - 对应的部分匹配值
因为 6 - 2 等于4,所以将搜索词向后移动4位。
10.
因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2("AB"),对应的"部分匹配值"为0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移2位。
11.
因为空格与A不匹配,继续后移一位。
12.
逐位比较,直到发现C与D不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动4位。
13.
逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配),移动位数 = 7 - 0,再将搜索词向后移动7位,这里就不再重复了。
14.
下面介绍《部分匹配表》是如何产生的。
首先,要了解两个概念:"前缀"和"后缀"。 "前缀"指除了最后一个字符以外,一个字符串的全部头部组合;"后缀"指除了第一个字符以外,一个字符串的全部尾部组合。
15.
"部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例:
- "A"的前缀和后缀都为空集,共有元素的长度为0;
- "AB"的前缀为[A],后缀为[B],共有元素的长度为0;
- "ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;
- "ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;
- "ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A",长度为1;
- "ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB",长度为2;
- "ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。
16.
"部分匹配"的实质是,有时候,字符串头部和尾部会有重复。比如,"ABCDAB"之中有两个"AB",那么它的"部分匹配值"就是2("AB"的长度)。搜索词移动的时候,第一个"AB"向后移动4位(字符串长度-部分匹配值),就可以来到第二个"AB"的位置。
从上面的讲解可以看出,KMP算法的核心是如何得到在字符失配时的移动步长。也就是如何得到《部分匹配表》。
OK,现在KMP算法基本介绍完了。来二两代码吧!
KMP算法的一个关键部分是得到《部分匹配表》。那么《部分匹配表》如何得到呢?上文已经有详细的介绍。
"部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例:
- "A"的前缀和后缀都为空集,共有元素的长度为0;
- "AB"的前缀为[A],后缀为[B],共有元素的长度为0;
- "ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;
- "ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;
- "ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A",长度为1;
- "ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB",长度为2;
- "ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。
据此,我们可以编码如下:
//返回值为一个指针。其指向的地址块连续存放了《部分匹配表》。
int* get_pmt(char * pattern){
if(pattern==NULL)
return NULL;
int len=strlen(pattern);
int* ppmt=(int*)malloc((len+1)*sizeof(int));//分配内存,用于存放《部分匹配表》。
memset(ppmt,0,sizeof((len+1)*sizeof(int)));//将分配的内存初始化为0
int i,j,k;
for(i=1;i<len;++i){
for(j=0;j<i;++j){
for(k=0;k<=j;++k){
if(pattern[k]!=pattern[i-j+k])//注意哦,这里是关键,注意数组的下标。如果没看明白,自己动手画一画。
break;
if((k==j)&&(k>=ppmt[i]))
ppmt[i]=k+1;
}
}
}
return ppmt;
}
好了,有了get_pmt函数后,我们就可以轻松的写出kmp算法了。全部代码如下,如果你看不明白,那去仔细看看正文吧。
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int* get_pmt(char * pattern){
if(pattern==NULL)
return NULL;
int len=strlen(pattern);
int* ppmt=(int*)malloc((len+1)*sizeof(int));//分配内存,用于存放《部分匹配表》。
memset(ppmt,0,sizeof((len+1)*sizeof(int)));//将分配的内存初始化为0
int i,j,k;
for(i=1;i<len;++i){
for(j=0;j<i;++j){
for(k=0;k<=j;++k){
if(pattern[k]!=pattern[i-j+k])//注意哦,这里是关键,注意数组的下标。如果没看明白,自己动手画一画。
break;
if((k==j)&&(k>=ppmt[i]))
ppmt[i]=k+1;
}
}
}
return ppmt;
}
int kmp_match(char *src,char *pattern){
if(src==NULL || pattern==NULL)
return -1;
int len1=strlen(src);
int len2=strlen(pattern);
int *pmt=get_pmt(pattern);
printf("src len is:%d
pattern len is:%d
",len1,len2);
int i,j;
for(i=0;i<len1-len2;){
for(j=0;j<len2;++j){
if(src[i+j]!=pattern[j]){
i+=(j-pmt[j])>1 ? (j-pmt[j]):1;
printf("i is %d
",i);//为了观察中间结果
break;
}
if(j==len2-1){
if(pmt)free(pmt);
return i;
}
}
}
if(pmt) free(pmt);
return -1;
}
int main(){
char src[32]="teslinuxlitforlinuxlinuetestfor";
char pattern[10]="linuxlinu";
printf("kmp_match result:%d
",kmp_match(src,pattern));
}
当然,上述代码并不是最优的代码,get_pmt函数的实现可以进行进一步优化,这里就不涉及了。
作者:JJDiaries(阿呆) 微信公众号:linux-code
KMP文字介绍部分链接:http://www.ruanyifeng.com/blog/2013/05/Knuth–Morris–Pratt_algorithm.html
本文链接:http://www.cnblogs.com/jjdiaries/p/3397285.html
转载请注明作者及链接。觉得有用就顶一下,觉得很烂就踩一脚,尽情的踩吧,呵呵