• HBase的Block Cache实现机制分析


    本文结合HBase 0.94.1版本源码,对HBase的Block Cache实现机制进行分析,总结学习其Cache设计的核心思想。

    1. 概述

    HBase上Regionserver的内存分为两个部分,一部分作为Memstore,主要用来写;另外一部分作为BlockCache,主要用于读。

    • 写请求会先写入Memstore,Regionserver会给每个region提供一个Memstore,当Memstore满64MB以后,会启动 flush刷新到磁盘。当Memstore的总大小超过限制时(heapsize * hbase.regionserver.global.memstore.upperLimit * 0.9),会强行启动flush进程,从最大的Memstore开始flush直到低于限制。
    • 读请求先到Memstore中查数据,查不到就到BlockCache中查,再查不到就会到磁盘上读,并把读的结果放入BlockCache。由于BlockCache采用的是LRU策略,因此BlockCache达到上限(heapsize * hfile.block.cache.size * 0.85)后,会启动淘汰机制,淘汰掉最老的一批数据。

    一个Regionserver上有一个BlockCache和N个Memstore,它们的大小之和不能大于等于heapsize * 0.8,否则HBase不能正常启动。

    默认配置下,BlockCache为0.2,而Memstore为0.4。在注重读响应时间的应用场景下,可以将 BlockCache设置大些,Memstore设置小些,以加大缓存的命中率。

    HBase RegionServer包含三个级别的Block优先级队列:

    • Single:如果一个Block第一次被访问,则放在这一优先级队列中;
    • Multi:如果一个Block被多次访问,则从Single队列移到Multi队列中;
    • InMemory:如果一个Block是inMemory的,则放到这个队列中。

    以上将Cache分级思想的好处在于:

    • 首先,通过inMemory类型Cache,可以有选择地将in-memory的column families放到RegionServer内存中,例如Meta元数据信息;
    • 通过区分Single和Multi类型Cache,可以防止由于Scan操作带来的Cache频繁颠簸,将最少使用的Block加入到淘汰算法中。

    默认配置下,对于整个BlockCache的内存,又按照以下百分比分配给Single、Multi、InMemory使用:0.25、0.50和0.25。

    注意,其中InMemory队列用于保存HBase Meta表元数据信息,因此如果将数据量很大的用户表设置为InMemory的话,可能会导致Meta表缓存失效,进而对整个集群的性能产生影响。

    2. 源码分析

    下面是对HBase 0.94.1中相关源码(org.apache.hadoop.hbase.io.hfile.LruBlockCache)的分析过程。

    2.1加入Block Cache

    复制代码
      /** Concurrent map (the cache) */
      private final ConcurrentHashMap<BlockCacheKey,CachedBlock> map;
    
      /**
       * Cache the block with the specified name and buffer.
       * <p>
       * It is assumed this will NEVER be called on an already cached block.  If
       * that is done, an exception will be thrown.
       * @param cacheKey block's cache key
       * @param buf block buffer
       * @param inMemory if block is in-memory
       */
      public void cacheBlock(BlockCacheKey cacheKey, Cacheable buf, boolean inMemory) {
        CachedBlock cb = map.get(cacheKey);
        if(cb != null) {
          throw new RuntimeException("Cached an already cached block");
        }
        cb = new CachedBlock(cacheKey, buf, count.incrementAndGet(), inMemory);
        long newSize = updateSizeMetrics(cb, false);
        map.put(cacheKey, cb);
        elements.incrementAndGet();
        if(newSize > acceptableSize() && !evictionInProgress) {
          runEviction();
        }
      }
    
      /**
       * Cache the block with the specified name and buffer.
       * <p>
       * It is assumed this will NEVER be called on an already cached block.  If
       * that is done, it is assumed that you are reinserting the same exact
       * block due to a race condition and will update the buffer but not modify
       * the size of the cache.
       * @param cacheKey block's cache key
       * @param buf block buffer
       */
      public void cacheBlock(BlockCacheKey cacheKey, Cacheable buf) {
        cacheBlock(cacheKey, buf, false);
      }
    复制代码

    1)  这里假设不会对同一个已经被缓存的BlockCacheKey重复放入cache操作;

    2)  根据inMemory标志创建不同类别的CachedBlock对象:若inMemory为true则创建BlockPriority.MEMORY类型,否则创建BlockPriority.SINGLE;注意,这里只有这两种类型的Cache,因为BlockPriority.MULTI在Cache Block被重复访问时才进行创建,见CachedBlock的access方法代码:

    复制代码
      /**
       * Block has been accessed.  Update its local access time.
       */
      public void access(long accessTime) {
        this.accessTime = accessTime;
        if(this.priority == BlockPriority.SINGLE) {
          this.priority = BlockPriority.MULTI;
        }
      }
    复制代码

    3)  将BlockCacheKey和创建的CachedBlock对象加入到全局的ConcurrentHashMap map中,同时做一些更新计数操作;

    4)  最后判断如果加入后的Block Size大于设定的临界值且当前没有淘汰线程运行,则调用runEviction()方法启动LRU淘汰过程:

    复制代码
      /** Eviction thread */
      private final EvictionThread evictionThread;
      
      /**
       * Multi-threaded call to run the eviction process.
       */
      private void runEviction() {
        if(evictionThread == null) {
          evict();
        } else {
          evictionThread.evict();
        }
      }
    复制代码

    其中,EvictionThread线程即是LRU淘汰的具体实现线程。下面将给出详细分析。

    2.2淘汰Block Cache

    EvictionThread线程主要用于与主线程的同步,从而完成Block Cache的LRU淘汰过程。

    复制代码
      /*
       * Eviction thread.  Sits in waiting state until an eviction is triggered
       * when the cache size grows above the acceptable level.<p>
       *
       * Thread is triggered into action by {@link LruBlockCache#runEviction()}
       */
      private static class EvictionThread extends HasThread {
        private WeakReference<LruBlockCache> cache;
        private boolean go = true;
    
        public EvictionThread(LruBlockCache cache) {
          super(Thread.currentThread().getName() + ".LruBlockCache.EvictionThread");
          setDaemon(true);
          this.cache = new WeakReference<LruBlockCache>(cache);
        }
    
        @Override
        public void run() {
          while (this.go) {
            synchronized(this) {
              try {
                this.wait();
              } catch(InterruptedException e) {}
            }
            LruBlockCache cache = this.cache.get();
            if(cache == null) break;
            cache.evict();
          }
        }
    
        public void evict() {
          synchronized(this) {
            this.notify(); // FindBugs NN_NAKED_NOTIFY
          }
        }
    
        void shutdown() {
          this.go = false;
          interrupt();
        }
      }
    复制代码

    EvictionThread线程启动后,调用wait被阻塞住,直到EvictionThread线程的evict方法被主线程调用时执行notify(见上面的代码分析过程,通过主线程的runEviction方法触发调用),开始执行LruBlockCache的evict方法进行真正的淘汰过程,代码如下:

    复制代码
      /**
       * Eviction method.
       */
      void evict() {
    
        // Ensure only one eviction at a time
        if(!evictionLock.tryLock()) return;
    
        try {
          evictionInProgress = true;
          long currentSize = this.size.get();
          long bytesToFree = currentSize - minSize();
    
          if (LOG.isDebugEnabled()) {
            LOG.debug("Block cache LRU eviction started; Attempting to free " +
              StringUtils.byteDesc(bytesToFree) + " of total=" +
              StringUtils.byteDesc(currentSize));
          }
    
          if(bytesToFree <= 0) return;
    
          // Instantiate priority buckets
          BlockBucket bucketSingle = new BlockBucket(bytesToFree, blockSize,
              singleSize());
          BlockBucket bucketMulti = new BlockBucket(bytesToFree, blockSize,
              multiSize());
          BlockBucket bucketMemory = new BlockBucket(bytesToFree, blockSize,
              memorySize());
    
          // Scan entire map putting into appropriate buckets
          for(CachedBlock cachedBlock : map.values()) {
            switch(cachedBlock.getPriority()) {
              case SINGLE: {
                bucketSingle.add(cachedBlock);
                break;
              }
              case MULTI: {
                bucketMulti.add(cachedBlock);
                break;
              }
              case MEMORY: {
                bucketMemory.add(cachedBlock);
                break;
              }
            }
          }
    
          PriorityQueue<BlockBucket> bucketQueue =
            new PriorityQueue<BlockBucket>(3);
    
          bucketQueue.add(bucketSingle);
          bucketQueue.add(bucketMulti);
          bucketQueue.add(bucketMemory);
    
          int remainingBuckets = 3;
          long bytesFreed = 0;
    
          BlockBucket bucket;
          while((bucket = bucketQueue.poll()) != null) {
            long overflow = bucket.overflow();
            if(overflow > 0) {
              long bucketBytesToFree = Math.min(overflow,
                (bytesToFree - bytesFreed) / remainingBuckets);
              bytesFreed += bucket.free(bucketBytesToFree);
            }
            remainingBuckets--;
          }
    
          if (LOG.isDebugEnabled()) {
            long single = bucketSingle.totalSize();
            long multi = bucketMulti.totalSize();
            long memory = bucketMemory.totalSize();
            LOG.debug("Block cache LRU eviction completed; " +
              "freed=" + StringUtils.byteDesc(bytesFreed) + ", " +
              "total=" + StringUtils.byteDesc(this.size.get()) + ", " +
              "single=" + StringUtils.byteDesc(single) + ", " +
              "multi=" + StringUtils.byteDesc(multi) + ", " +
              "memory=" + StringUtils.byteDesc(memory));
          }
        } finally {
          stats.evict();
          evictionInProgress = false;
          evictionLock.unlock();
        }
      }
    复制代码

    1)首先获取锁,保证同一时刻只有一个淘汰线程运行;

    2)计算得到当前Block Cache总大小currentSize及需要被淘汰释放掉的大小bytesToFree,如果bytesToFree小于等于0则不进行后续操作;

    3) 初始化创建三个BlockBucket队列,分别用于存放Single、Multi和InMemory类Block Cache,其中每个BlockBucket维护了一个CachedBlockQueue,按LRU淘汰算法维护该BlockBucket中的所有CachedBlock对象;

    4) 遍历记录所有Block Cache的全局ConcurrentHashMap,加入到相应的BlockBucket队列中;

    5) 将以上三个BlockBucket队列加入到一个优先级队列中,按照各个BlockBucket超出bucketSize的大小顺序排序(见BlockBucket的compareTo方法);

    6) 遍历优先级队列,对于每个BlockBucket,通过Math.min(overflow, (bytesToFree - bytesFreed) / remainingBuckets)计算出需要释放的空间大小,这样做可以保证尽可能平均地从三个BlockBucket中释放指定的空间;具体实现过程详见BlockBucket的free方法,从其CachedBlockQueue中取出即将被淘汰掉的CachedBlock对象:

    复制代码
        public long free(long toFree) {
          CachedBlock cb;
          long freedBytes = 0;
          while ((cb = queue.pollLast()) != null) {
            freedBytes += evictBlock(cb);
            if (freedBytes >= toFree) {
              return freedBytes;
            }
          }
          return freedBytes;
        }
    复制代码

    7) 进一步调用了LruBlockCache的evictBlock方法,从全局ConcurrentHashMap中移除该CachedBlock对象,同时更新相关计数:

    复制代码
      protected long evictBlock(CachedBlock block) {
        map.remove(block.getCacheKey());
        updateSizeMetrics(block, true);
        elements.decrementAndGet();
        stats.evicted();
        return block.heapSize();
      }
    复制代码

    8) 释放锁,完成善后工作。

    3. 总结

    以上关于Block Cache的实现机制,核心思想是将Cache分级,这样的好处是避免Cache之间相互影响,尤其是对HBase来说像Meta表这样的Cache应该保证高优先级。

  • 相关阅读:
    从txt读取数据到Cvmat
    PCA之后进行归一化
    vc中调用exe文件并传递参数
    C#安装包过程
    电脑技巧
    DLL文件的创建与调用
    SVM调用方法
    舌顶上腭位置与作用
    KNN算法的實現
    How to Read a Paper
  • 原文地址:https://www.cnblogs.com/Leo_wl/p/2701056.html
Copyright © 2020-2023  润新知