• beta分布


    1、beta分布

    来源于:https://blog.csdn.net/a358463121/article/details/52562940

    用一句话来说,beta分布可以看作一个概率的概率分布,当你不知道一个东西的具体概率是多少时,它可以给出了所有概率出现的可能性大小。

    举一个简单的例子,熟悉棒球运动的都知道有一个指标就是棒球击球率(batting average),就是用一个运动员击中的球数除以击球的总数,我们一般认为0.266是正常水平的击球率,而如果击球率高达0.3就被认为是非常优秀的。

    现在有一个棒球运动员,我们希望能够预测他在这一赛季中的棒球击球率是多少。你可能就会直接计算棒球击球率,用击中的数除以击球数,但是如果这个棒球运动员只打了一次,而且还命中了,那么他就击球率就是100%了,这显然是不合理的,因为根据棒球的历史信息,我们知道这个击球率应该是0.215到0.36之间才对啊。

    对于这个问题,我们可以用一个二项分布表示(一系列成功或失败),一个最好的方法来表示这些经验(在统计中称为先验信息)就是用beta分布,这表示在我们没有看到这个运动员打球之前,我们就有了一个大概的范围。beta分布的定义域是(0,1)这就跟概率的范围是一样的。

    接下来我们将这些先验信息转换为beta分布的参数,我们知道一个击球率应该是平均0.27左右,而他的范围是0.21到0.35,那么根据这个信息,我们可以取α=81,β=219

    之所以取这两个参数是因为:

    • beta分布的均值是αα+β=8181+219=0.27αα+β=8181+219=0.27
    • 从图中可以看到这个分布主要落在了(0.2,0.35)间,这是从经验中得出的合理的范围。

    在这个例子里,我们的x轴就表示各个击球率的取值,x对应的y值就是这个击球率所对应的概率。也就是说beta分布可以看作一个概率的概率分布。

    那么有了先验信息后,现在我们考虑一个运动员只打一次球,那么他现在的数据就是”1中;1击”。这时候我们就可以更新我们的分布了,让这个曲线做一些移动去适应我们的新信息。beta分布在数学上就给我们提供了这一性质,他与二项分布是共轭先验的(Conjugate_prior)。所谓共轭先验就是先验分布是beta分布,而后验分布同样是beta分布。结果很简单:

     
    Beta(α0+hits,β0+misses)

    其中α0β0是一开始的参数,在这里是81和219。所以在这一例子里,α增加了1(击中了一次)。β没有增加(没有漏球)。这就是我们的新的beta分布Beta(81+1,219)

    可以看到这个分布其实没多大变化,这是因为只打了1次球并不能说明什么问题。但是如果我们得到了更多的数据,假设一共打了300次,其中击中了100次,200次没击中,那么这一新分布就是:

     
    beta(81+100,219+200)
     

    注意到这个曲线变得更加尖,并且平移到了一个右边的位置,表示比平均水平要高。

    一个有趣的事情是,根据这个新的beta分布,我们可以得出他的数学期望为:α / (α+β)=(82+100) / (82+100+219+200) =.303   α / (α+β) = (82+100) / (82+100+219+200) =.303 ,这一结果要比直接的估计要小 100 / (100+200) =.333  100 / (100+200) =.333 。你可能已经意识到,我们事实上就是在这个运动员在击球之前可以理解为他已经成功了81次,失败了219次这样一个先验信息。

    因此,对于一个我们不知道概率是什么,而又有一些合理的猜测时,beta分布能很好的作为一个表示概率的概率分布。

  • 相关阅读:
    系统实践2-2:查看dockerfile-032092135mysql容器的配置信息
    系统综合实践1
    SDN——实验脚本7-2:hardtimeout.json
    SDN——实验脚本7-1:odlnorth.py
    实验 7:OpenDaylight 实验——Python 中的 REST API 调用
    预习非数值数据的编码方式
    预习原码补码
    C语言ll作业01
    C语言寒假大作战04
    C语言寒假大作战03
  • 原文地址:https://www.cnblogs.com/Lee-yl/p/9640280.html
Copyright © 2020-2023  润新知