题目描述
有n个重物,每个重物系在一条足够长的绳子上。每条绳子自上而下穿过桌面上的洞,然后系在一起。图中X处就是公共的绳结。假设绳子是完全弹性的(不会造成能量损失),桌子足够高(因而重物不会垂到地上),且忽略所有的摩擦。
问绳结X最终平衡于何处。
注意:桌面上的洞都比绳结X小得多,所以即使某个重物特别重,绳结X也不可能穿过桌面上的洞掉下来,最多是卡在某个洞口处。
输入输出格式
输入格式:
文件的第一行为一个正整数n(1≤n≤1000),表示重物和洞的数目。接下来的n行,每行是3个整数:Xi.Yi.Wi,分别表示第i个洞的坐标以及第 i个重物的重量。(-10000≤x,y≤10000, 0<w≤1000 )
输出格式:
你的程序必须输出两个浮点数(保留小数点后三位),分别表示处于最终平衡状态时绳结X的横坐标和纵坐标。两个数以一个空格隔开。
输入输出样例
输入样例 1:
3
0 0 1
0 2 1
1 1 1
输出样例 1:
0.577 1.000
数据范围
1≤n≤1000
-10000≤x,y≤10000, 0<w≤1000
Solution
首先看看这个题目(貌似像物理题)。
当x点确定时,所有重物的重力势能之和最小,由于所有的绳子是一样长的,所以重的物体离地面要近一些,必须使得桌面上的那一截绳子最短,也就是离x点越近。
那么我们不难列出这个式子:
其中dist为点到x的距离,weight为点上物体的重量
当上述式子最小时,即为答案x。
贴代码
#include<bits/stdc++.h>
using namespace std;
const int Maxn=1005;
struct Lemon
{
int x,y,m;
}point[Maxn];
int n;
double ansx,ansy;
void read()
{
int allx=0,ally=0;
cin>>n;
for(int i=1;i<=n;i++)
{
scanf("%d%d%d",&point[i].x,&point[i].y,&point[i].m);
allx+=point[i].x;
ally+=point[i].y;
}
ansx=double(allx)/double(n);
ansy=double(ally)/double(n);
return ;
}
double get(double x,double y)
{
double sum=0;
for(int i=1;i<=n;i++)
{
double lex=point[i].x-x;
double ley=point[i].y-y;
sum+=sqrt(lex*lex+ley*ley)*point[i].m;
}
return sum;
}
double ans=1000000000000009,t;//ans不要开太小,被这个坑了好久
const double delta=0.9969;
void fire()
{
double menx=ansx;
double meny=ansy;
t=1218.0;
while(t>1e-14)
{
double xtemp=ansx+(rand()*2-RAND_MAX)*t;
double ytemp=ansy+(rand()*2-RAND_MAX)*t;
double newans=get(xtemp,ytemp);
double DE=newans-ans;
if(DE<0)
{
menx=xtemp;
meny=ytemp;
ansx=xtemp;
ansy=ytemp;
ans=newans;
}
else if(exp(-DE/t)*RAND_MAX>rand())
{
menx=xtemp;
meny=ytemp;
}
t*=delta;
}
}
int main()
{
read();
fire();
fire();
fire();
fire();
printf("%.3lf %.3lf",ansx,ansy);
return 0;
}