• embedding based logistic regression-神经网络逻辑回归tensorflow


    --- 灵感 --- 因为最近一直在做rnn based NLP,其中无论是什么cell,lstm, GRU或者cnn都是基于单词的embedding表示;单词的embdding就是把每个单词表示成一个向量, 然后通过bp训练这些向量的值,这种想法很奇妙,于是我尝试性的把这种思想用在logistic regression上面;

    --- 问题 --- 对于logistic regression的话,很多向量都是categorial,如果碰到有1000个category怎么做?转换成1000*1的one-hot向量吗? 方法:用embedding, 每个category给一个10维的向量,然后再用传统的回归或者神经网络的方法;

    --- 实验 --- 1: 数据一览; 数据来自kaggle, 是redhat那个项目,感兴趣的自己去看看; 2:方法; 标题是逻辑回归,但是本质上还是神经网络做分类;但是这个问题传统上都是用逻辑回归解决的,因为包含了很多categorial的数据,然后label是0和1,要求做分类; 运行一个logistic regression是很简单的;但是这里的问题是数据里面有个group变量和一个people向量,group大概有3k+种类,people大概有180K+种类,显然转换成dummy变量再做逻辑回归的话不合适;这里我主要是参考word embedding的思想,在tensorflow里面建立两个个词典,一个people词典一个group词典,然后训练的时候分别去查这个词典返回两个10维的实数向量,这两个实数向量就分别是people和group的特征;之后再随便弄了一点full connected的层和一些激活函数,效果不错,很快收敛到90%以上了; 3:效果; 这个数据的话,我刚开始只是想用来实验在tf.Session()的情况下怎么样batch读取tfrecords数据的,因为tfrecords数据读取的话不需要把整个数据load进去内存;之前一直用estimator的方法读tfrecords,但是用session之后似乎没有很好的解决方法; 效果还不错,主要是感觉对于多种类的问题都可以用embedding的方法来做了以后;

    #encoding=utf-8
    import numpy as np 
    import tensorflow as tf 
    import pickle
    import random 
    model_dir = '/home/yanjianfeng/kaggle/data/model_dir/'
    
    
    people_dic, group_dic, dic = pickle.load(open('/home/yanjianfeng/kaggle/data/data.dump', 'r'))
    def create_train_op(loss):
        train_op = tf.contrib.layers.optimize_loss(loss = loss, 
            global_step = tf.contrib.framework.get_global_step(), 
            learning_rate = 0.1, 
            clip_gradients = 10.0, 
            optimizer = "Adam")
        return train_op 
    
    def create_input():
        random_id = random.randint(0, len(dic['outcome'])-2049)
        keys = dic.keys() 
        data = {}
        for k in keys:
            data[k] = dic[k][random_id: random_id+2048]
        return data
    
    
    # 主体部分还是最好不要放在函数里面,不太容易提取出某个特定的值
    # 或者直接把主体部分放在tf.Session里面比较容, 大概就是这么一个模式;
    
    
    global_step = tf.Variable(0, name = 'global_step', trainable=False)
    
    people_id = tf.placeholder("int64", [None])
    group = tf.placeholder('int64', [None])
    time = tf.placeholder('int64', [None])
    peofea = tf.placeholder('int64', [None, 262])
    rowfea = tf.placeholder('int64', [None, 174])
    outcome = tf.placeholder("int64", [None])
    
    name_embed = tf.get_variable('names', shape = [189120, 10])
    group_embed = tf.get_variable('groups', shape = [35000, 10])
    name_ = tf.nn.embedding_lookup(name_embed, people_id)
    group_ = tf.nn.embedding_lookup(group_embed, group)
    
    name_w = tf.get_variable('name_w', shape = [10, 2])
    group_w = tf.get_variable('group_w', shape = [10, 5])
    
    name_outcome = tf.matmul(name_, name_w)
    group_outcome = tf.matmul(group_, group_w)
    
    w_1 = tf.get_variable('w_1', shape = [262, 10])
    w_2 = tf.get_variable('w_2', shape = [174, 10])
    w_3 = tf.get_variable('w_3', shape = [1])
    
    peofea_outcome = tf.matmul(tf.to_float(peofea), w_1)
    rowfea_outcome = tf.matmul(tf.to_float(rowfea), w_2)
    
    time_outcome = tf.mul(tf.to_float(time), w_3)
    time_outcome = tf.expand_dims(time_outcome, -1)
    
    name_outcome = tf.sigmoid(name_outcome)
    group_outcome = tf.sigmoid(group_outcome)
    peofea_outcome = tf.sigmoid(peofea_outcome)
    rowfea_outcome = tf.sigmoid(rowfea_outcome)
    time_outcome = tf.sigmoid(time_outcome)
    
    x = tf.concat(1, [name_outcome, group_outcome, peofea_outcome, rowfea_outcome, time_outcome])
    
    w_f = tf.get_variable('w_f', shape = [28, 28])
    b = tf.get_variable('b', shape = [1])
    w_f_2 = tf.get_variable('w_f_2', shape = [28, 1])
    
    pred = tf.sigmoid(tf.matmul(x, w_f)) + b 
    pred = tf.matmul(pred, w_f_2)
    
    y = tf.expand_dims(tf.to_float(outcome), -1)
    
    prob = tf.sigmoid(pred)
    prob = tf.to_float(tf.greater(prob, 0.5))
    c = tf.reduce_mean(tf.to_float(tf.equal(prob, y)))
    
    loss = tf.nn.sigmoid_cross_entropy_with_logits(pred, y)
    loss = tf.reduce_mean(loss)
    train_op = create_train_op(loss)
    
    
    
    # 这里的顺序很重要,要是在最前面用saver,则会save到最开始的情况?
    saver = tf.train.Saver()
    with tf.Session() as sess:
    
        sess.run(tf.initialize_all_variables())
        ckpt = tf.train.get_checkpoint_state(model_dir)
        if ckpt and ckpt.model_checkpoint_path:
            print 'the model being restored is '
            print ckpt.model_checkpoint_path 
            saver.restore(sess, ckpt.model_checkpoint_path)
            print 'sucesssfully restored the session'
    
        count = global_step.eval()
    
        for i in range(0, 10000):
            data = create_input()
            l, _ , c_ = sess.run([loss, train_op, c], feed_dict = {people_id: data['people_id'],
                group: data['group'],
                time: data['time'],
                peofea: data['people_features'],
                rowfea: data['row_features'],
                outcome: data['outcome']})
            print 'the loss	' + str(l) + '		the count	' + str(c_)
            global_step.assign(count).eval()
            saver.save(sess, model_dir + 'model.ckpt', global_step = global_step)
            count += 1 
  • 相关阅读:
    SpringMVC中利用@InitBinder来对页面数据进行解析绑定
    转型新零售必看:线下零售的运营模型
    主流CTR预估模型的演化及对比
    tensorflow创建自定义 Estimator
    构建分布式Tensorflow模型系列:CVR预估之ESMM
    tensorflow tfdbg 调试手段
    推荐系统算法学习(一)——协同过滤(CF) MF FM FFM
    CTR预估算法之FM, FFM, DeepFM及实践
    深度学习在美团搜索广告排序的应用实践
    Redis集群搭建最佳实践
  • 原文地址:https://www.cnblogs.com/LarryGates/p/6560839.html
Copyright © 2020-2023  润新知