C. Moamen and XOR
题目大意
给定(n,k),要求创建一个(n)个数的数组(a),满足(0 leq a_i < 2^k),且(a_1 \,&\, a_2 \,&\, a_3 \,&\, ldots \,&\, a_n ge a_1 oplus a_2 oplus a_3 oplus ldots oplus a_n),问方案数。
解题思路
简单(DP)。
从高位考虑,设(dp[i])表示前(i)位满足条件的方案数,根据(n)的奇偶性,考虑与结果第(i)位为(0)和(1)时的转移即可。
- (n)为奇数
- 与结果第(i)位为(1),则异或结果也为(1),此时(dp[i] += dp[i - 1])
- 与结果第(i)位为(0),则要使异或结果也为(0),第(i)位填法有(C_n^0 + C_n^2 + C_n^4 + ... + C_n^{n-1} = 2^{n-1}),此时(dp[i] += 2^{n-1}dp[i - 1])
- 即(dp[i] = dp[i - 1] + 2^{n-1}dp[i-1])
- (n)为偶数
- 与结果第(i)位为(1),则异或结果为(0),剩下(i-1)位随便填,此时(dp[i] += 2^{(i-1)n})
- 与结果第(i)位为(0),则要使异或结果也为(0),第(i)位填法有(C_n^0 + C_n^2 + C_n^4 + ... + C_n^{n - 2} = 2^{n-1} - 1),此时(dp[i] += (2^{n-1} - 1) imes dp[i - 1])(除去(C_n^n)即全为1的填法,因为此时与结果为1)
- 即(dp[i] = 2^{(i-1)n} + (2^{n-1} - 1) imes dp[i-1])
神奇的代码
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
template <typename T>
void read(T &x) {
int s = 0, c = getchar();
x = 0;
while (isspace(c)) c = getchar();
if (c == 45) s = 1, c = getchar();
while (isdigit(c)) x = (x << 3) + (x << 1) + (c ^ 48), c = getchar();
if (s) x = -x;
}
template <typename T, typename... rest>
void read(T &x, rest&... Rest) {
read(x);
read(Rest...);
}
template <typename T>
void write(T x, char c = ' ') {
int b[40], l = 0;
if (x < 0) putchar(45), x = -x;
while (x > 0) b[l++] = x % 10, x /= 10;
if (!l) putchar(48);
while (l) putchar(b[--l] | 48);
putchar(c);
}
const LL mo = 1e9 + 7;
const int N = 2e5 + 8;
int n, k;
LL dp[N], p2[N];
LL qpower(LL a, LL b){
LL qwq = 1;
while(b){
if (b & 1)
qwq = qwq * a % mo;
a = a * a % mo;
b >>= 1;
}
return qwq;
}
int main(void) {
int kase; read(kase);
p2[0] = 1;
for(int i = 1; i < N; ++ i)
p2[i] = p2[i - 1] * 2 % mo;
for (int ii = 1; ii <= kase; ii++) {
read(n, k);
memset(dp, 0, sizeof(dp));
dp[0] = 1;
for(int i = 1; i <= k; ++ i)
if (n & 1){
dp[i] = (dp[i - 1] + p2[n - 1] * dp[i - 1] % mo) % mo;
}else{
dp[i] = (qpower(p2[i - 1], n) + (p2[n - 1] - 1) * dp[i - 1] % mo) % mo;
}
write(dp[k], '
');
}
return 0;
}