首先我们从最简单的dp开始
(dp[i][j]=dp[i-1][j]+dp[i-1][j+1]+dp[i-1][j-1])
然后这是一个O(NM)的做法,肯定行不通,然后我们考虑使用矩阵加速
(egin{bmatrix} 1\ 0 \0\0end{bmatrix}quad)
鉴于纵坐标很小,考虑全部记录下来。写成一个向量的形式。如上,
第i行的数表示纵坐标为i-1的方案数。
然后我们考虑转移
(egin{bmatrix} 1&1&0&0\1&1&1&0 \0&1&1&1\0&0&1&1end{bmatrix}quad)
我们将不考虑线段的转移写成以上形式,然后考虑一下如果有线段影响呢?
我们可以类比得到,上一个矩阵中的边界是3,如果我们人为规定上边界是2的话。转移就成了这个样子
(egin{bmatrix} 1&1&0&0\1&1&1&0 \0&1&1&0\0&0&0&0end{bmatrix}quad)
然后我们发现,如果不是上边界和下边界时,matrix[i][i].matrix[i][i-1].matrix[i][i+1]都是1,然后上下边界自己处理就可以了。
然后我们上一个矩阵快速幂就可以了
#include<cstdio>
#include<algorithm>
#include<iostream>
using namespace std;
const long long mod=1e9+7;
struct node
{
int n,m;
long long base[20][20];
node operator * (const node &a)const
{
node r;
r.n=n,r.m=a.m;
for(int i=0;i<=n;i++) for(int j=0;j<=a.m;j++) r.base[i][j]=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=a.m;j++)
for(int k=1;k<=m;k++)
r.base[i][j]=(r.base[i][j]+base[i][k]*a.base[k][j])%mod;
return r;
}
};//矩阵模板
node pas,ans;
long long a[120],b[120],c[120];
node kasumi(long long k)
{
node res;
res.n=res.m=pas.n;
for(int i=0;i<=res.n;i++) for(int j=0;j<=res.m;j++) res.base[i][j]=0;
for(int i=0;i<=res.n;i++) res.base[i][i]=1;
while(k)
{
if(k&1) res=res*pas;
pas=pas*pas;
k>>=1;
}
return res;//快速幂
}
int main()
{
long long n,k;
scanf("%lld%lld",&n,&k);
ans.n=1;ans.m=16;
for(int i=1;i<=16;i++) for(int j=1;j<=16;j++) ans.base[i][j]=0;//读入数据
ans.base[1][1]=1;//处理初始数据
pas.n=16;pas.m=16;
for(int i=1;i<=n;i++) scanf("%lld%lld%lld",&a[i],&b[i],&c[i]);//输入
for(int l=1;l<=n;l++)//然后按照顺序遍历线段
{
for(int i=0;i<=16;i++) for(int j=0;j<=16;j++) pas.base[i][j]=0;//重新清零
for(int i=1;i<=c[l]+1;i++)
{//处理转移数组
if(i!=1) pas.base[i][i-1]=1;
pas.base[i][i]=1;
if(i!=c[l]+1) pas.base[i][i+1]=1;
}
ans=ans*kasumi(min(b[l],k)-a[l]);//快速幂就可以了
}
printf("%lld",ans.base[1][1]);
}