• SparkSQL 编程


    2.SparkSQL 编程

    2.1 SparkSession 新的起始点

      在老的版本中,SparkSQL 提供两种 SQL 查询起始点:一个叫 SQLContext,用于 Spark 自己
    提供的 SQL 查询;一个叫 HiveContext,用于连接 Hive 的查询。
      SparkSession 是 Spark 最新的 SQL 查询起始点,实质上是 SQLContext 和 HiveContext 的组
    合,所以在 SQLContext 和 HiveContext 上可用的 API 在 SparkSession 上同样是可以使用的。
    SparkSession 内部封装了 sparkContext,所以计算实际上是由 sparkContext 完成的。
     
     

    2.2 DataFrame

    2.2.1 创建

      在 Spark SQL 中 SparkSession 是创建 DataFrame 和执行 SQL 的入口,创建 DataFrame 有三种
    方式:通过 Spark 的数据源进行创建;从一个存在的 RDD 进行转换;还可以从 Hive Table 进行查
    询返回。
     
    1)从 Spark 数据源进行创建
    (1)查看 Spark 数据源进行创建的文件格式
    scala> spark.read.
    csv format jdbc json load option options orc parquet schema table text textFile
    (2)读取 json 文件创建 DataFrame
    scala> val df = spark.read.json("/opt/module/spark/examples/src/main/resources/people.json")
    df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
    (3)展示结果
    scala> df.show
    +----+-------+
    | age| name|
    +----+-------+
    |null|Michael|
    | 30| Andy|
    | 19| Justin|
    +----+-------+
    2)从 RDD 进行转换
    2.5 节我们专门讨论
    3)从 Hive Table 进行查询返回
    3.3 节我们专门讨论
     
     
     

    2.2.2 SQL 风格语法(主要)

    1)创建一个 DataFrame
    scala> val df = spark.read.json("/opt/module/spark/examples/src/main/resources/people.json")
    df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
    2)对 DataFrame 创建一个临时表
    scala> df.createOrReplaceTempView("people")
    3)通过 SQL 语句实现查询全表
    scala> val sqlDF = spark.sql("SELECT * FROM people")
    sqlDF: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
    4)结果展示
    scala> sqlDF.show
    +----+-------+
    | age| name|
    +----+-------+
    |null|Michael|
    | 30| Andy|
    | 19| Justin|
    +----+-------+
    注意:临时表是 Session 范围内的,Session 退出后,表就失效了。如果想应用范围内有效,可以
    使用全局表。注意使用全局表时需要全路径访问,如:global_temp.people
     
     
    5)对于 DataFrame 创建一个全局表
    scala> df.createGlobalTempView("people")
    6)通过 SQL 语句实现查询全表
    scala> spark.sql("SELECT * FROM global_temp.people").show()
    +----+-------+
    | age| name|
    +----+-------+
    |null|Michael|
    | 30| Andy|
    | 19| Justin|
    scala> spark.newSession().sql("SELECT * FROM global_temp.people").show()
    +----+-------+
    | age| name|
    +----+-------+
    |null|Michael|
    | 30| Andy|
    | 19| Justin|
    +----+-------+

    2.2.3 DSL 风格语法(次要)

    1)创建一个 DataFrame
    scala> val df = spark.read.json("/opt/module/spark/examples/src/main/resources/people.json")
    df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
    2)查看 DataFrame 的 Schema 信息
    scala> df.printSchema
    root
    |-- age: long (nullable = true)
    |-- name: string (nullable = true)
    3)只查看”name”列数据
    scala> df.select("name").show()
    +-------+
    | name|
    +-------+
    |Michael|
    | Andy|
    | Justin|
    +-------+
    4)查看”name”列数据以及”age+1”数据
    scala> df.select($"name", $"age" + 1).show()
    +-------+---------+
    | name|(age + 1)|
    +-------+---------+
    |Michael| null|
    | Andy| 31|
    | Justin| 20|
    +-------+---------+
    5)查看”age”大于”21”的数据
    scala> df.filter($"age" > 21).show()
    +---+----+
    |age|name|
    +---+----+
    | 30|Andy|
    +---+----+
    6)按照”age”分组,查看数据条数
    scala> df.groupBy("age").count().show()
    +----+-----+
    | age|count|
    +----+-----+
    | 19| 1|
    |null| 1|
    | 30| 1|
    +----+-----+

    测试:

    scala> spark.read.
    csv      jdbc   load     options   parquet   table   textFile         
    format   json   option   orc       schema    text                     
    
    scala> spark.read.json("./examples/src/main/resources/people.json")
    res0: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
    
    scala> res0.collect
    res1: Array[org.apache.spark.sql.Row] = Array([null,Michael], [30,Andy], [19,Justin])
    
    scala> res0.show
    +----+-------+
    | age|   name|
    +----+-------+
    |null|Michael|
    |  30|   Andy|
    |  19| Justin|
    +----+-------+
    
    
    scala> res0.select("name").show
    +-------+
    |   name|
    +-------+
    |Michael|
    |   Andy|
    | Justin|
    +-------+
    
    
    scala> res0.select("age","name").show
    +----+-------+
    | age|   name|
    +----+-------+
    |null|Michael|
    |  30|   Andy|
    |  19| Justin|
    +----+-------+
    
    
    scala> res0.select($"age"+1).show
    +---------+
    |(age + 1)|
    +---------+
    |     null|
    |       31|
    |       20|
    +---------+
    
    
    scala> res0.select($"age"+1,$"name").show
    +---------+-------+
    |(age + 1)|   name|
    +---------+-------+
    |     null|Michael|
    |       31|   Andy|
    |       20| Justin|
    +---------+-------+
    
    
    scala> res0.select($"name").show
    +-------+
    |   name|
    +-------+
    |Michael|
    |   Andy|
    | Justin|
    +-------+
    
    
    scala> res0.first
    res9: org.apache.spark.sql.Row = [null,Michael]
    
    scala> res0.filter($"age">20).show
    +---+----+
    |age|name|
    +---+----+
    | 30|Andy|
    +---+----+
    
    
    scala> res0.create
    createGlobalTempView   createOrReplaceTempView   createTempView
    
    scala> res0.createTempView("people")
    
    scala> spark.sql("select * from people").show
    +----+-------+
    | age|   name|
    +----+-------+
    |null|Michael|
    |  30|   Andy|
    |  19| Justin|
    +----+-------+
    
    
    scala> spark.sql("select * from people where age > 20").show
    +---+----+
    |age|name|
    +---+----+
    | 30|Andy|
    +---+----+
     

    2.2.4 RDD 转换为 DateFrame

    注意:如果需要 RDD 与 DF 或者 DS 之间操作,那么都需要引入 import spark.implicits._ 【spark
    不是包名,而是 sparkSession 对象的名称】
    前置条件:导入隐式转换并创建一个 RDD
    scala> import spark.implicits._
    import spark.implicits._
    scala
    > val peopleRDD = sc.textFile("examples/src/main/resources/people.txt") peopleRDD: org.apache.spark.rdd.RDD[String] = examples/src/main/resources/people.txt MapPartitionsRDD[3] at textFile at <console>:27
    1)通过手动确定转换
    scala> peopleRDD.map{x=>val para = x.split(",");(para(0),para(1).trim.toInt)}.toDF("name","age")
    res1: org.apache.spark.sql.DataFrame = [name: string, age: int]
    2)通过反射确定(需要用到样例类)
    (1)创建一个样例类
    scala> case class People(name:String, age:Int)
    (2)根据样例类将 RDD 转换为 DataFrame
    scala> peopleRDD.map{ x => val para = x.split(",");People(para(0),para(1).trim.toInt)}.toDF
    res2: org.apache.spark.sql.DataFrame = [name: string, age: int]
    3)通过编程的方式(了解)
    (1)导入所需的类型
    scala> import org.apache.spark.sql.types._
    import org.apache.spark.sql.types._
    (2)创建 Schema
    scala> val structType: StructType = StructType(StructField("name", 
    StringType) :: StructField("age", IntegerType) :: Nil)
    structType: org.apache.spark.sql.types.StructType = 
    StructType(StructField(name,StringType,true), 
    StructField(age,IntegerType,true))
    (3)导入所需的类型
    scala> import org.apache.spark.sql.Row
    import org.apache.spark.sql.Row
    (4)根据给定的类型创建二元组 RDD
    scala> val data = peopleRDD.map{ x => val para = x.split(",");Row(para(0),para(1).trim.toInt)}
    data: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[6] at map at <console>:33
    (5)根据数据及给定的 schema 创建 DataFrame
    scala> val dataFrame = spark.createDataFrame(data, structType)
    dataFrame: org.apache.spark.sql.DataFrame = [name: string, age: int]

    2.2.5 DateFrame 转换为 RDD

    直接调用 rdd 即可
    1)创建一个 DataFrame
    scala> val df = 
    spark.read.json("/opt/module/spark/examples/src/main/resources/people.json")
    df: org.apache.spark.sql.DataFrame = [age: bigint, name: string] 
    2)将 DataFrame 转换为 RDD
    scala> val dfToRDD = df.rdd
    dfToRDD: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[19] at rdd at <console>:29
    3)打印 RDD
    scala> dfToRDD.collect
    res13: Array[org.apache.spark.sql.Row] = Array([Michael, 29], [Andy, 30], [Justin, 19])
     
     
     

    2.3 DataSet

    Dataset 是具有强类型的数据集合,需要提供对应的类型信息。
     
     

    2.3.1 创建

    1)创建一个样例类
    scala> case class Person(name: String, age: Long)
    defined class Person
    2)创建 DataSet
    scala> val caseClassDS = Seq(Person("Andy", 32)).toDS()
    caseClassDS: org.apache.spark.sql.Dataset[Person] = [name: string, age: bigint]

    2.3.2 RDD 转换为 DataSet

      SparkSQL 能够自动将包含有 case 类的 RDD 转换成 DataFrame,case 类定义了 table 的结构,
    case 类属性通过反射变成了表的列名。Case 类可以包含诸如 Seqs 或者 Array 等复杂的结构。
     
    1)创建一个 RDD
    scala> val peopleRDD = sc.textFile("examples/src/main/resources/people.txt")
    peopleRDD: org.apache.spark.rdd.RDD[String]
    = examples/src/main/resources/people.txt MapPartitionsRDD[3] at textFile at <console>:27
    2)创建一个样例类
    scala> case class Person(name: String, age: Long)
    defined class Person
    3)将 RDD 转化为 DataSet
    scala> peopleRDD.map(line => {val para = line.split(",");Person(para(0),para(1).trim.toInt)}).toDS
    res8: org.apache.spark.sql.Dataset[Person] = [name: string, age: bigint]

    2.3.3 DataSet 转换为 RDD

    调用 rdd 方法即可。
    1)创建一个 DataSet
    scala> val DS = Seq(Person("Andy", 32)).toDS()
    DS: org.apache.spark.sql.Dataset[Person] = [name: string, age: bigint]
    2)将 DataSet 转换为 RDD
    scala> DS.rdd
    res11: org.apache.spark.rdd.RDD[Person] = MapPartitionsRDD[15] at rdd at <console>:28
     
     

    2.4 DataFrame 与 DataSet 的互操作

    2.4.1 DataFrame 转 Dataset

    1)创建一个 DateFrame
    scala> val df = spark.read.json("examples/src/main/resources/people.json")
    df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
    2)创建一个样例类
    scala> case class Person(name: String, age: Long)
    defined class Person
    3)将 DateFrame 转化为 DataSet
    scala> df.as[Person]
    res14: org.apache.spark.sql.Dataset[Person] = [age: bigint, name: string]
    这种方法就是在给出每一列的类型后,使用 as 方法,转成 Dataset,这在数据类型是 DataFrame 又
    需 要 针 对 各 个 字 段 处 理 时 极 为 方 便 。 在 使 用 一 些 特 殊 的 操 作 时 , 一 定 要 加 上 import
    spark.implicits._ 不然 toDF、toDS 无法使用。
     
     
     

    2.4.2 Dataset 转 DataFrame

    1)创建一个样例类
    scala> case class Person(name: String, age: Long)
    defined class Person
    2)创建 DataSet
    scala> val ds = Seq(Person("Andy", 32)).toDS()
    ds: org.apache.spark.sql.Dataset[Person] = [name: string, age: bigint]
    3)将 DataSet 转化为 DataFrame
    scala> val df = ds.toDF
    df: org.apache.spark.sql.DataFrame = [name: string, age: bigint]
    4)展示
    scala> df.show
    +----+---+
    |name|age|
    +----+---+
    |Andy| 32|
    +----+---+

    2.5 RDD、DataFrame、DataSet

      在 SparkSQL 中 Spark 为我们提供了两个新的抽象,分别是 DataFrame 和 DataSet。他们和
    RDD 有什么区别呢?首先从版本的产生上来看:
    RDD (Spark1.0) —> Dataframe(Spark1.3) —> Dataset(Spark1.6)
     
      如果同样的数据都给到这三个数据结构,他们分别计算之后,都会给出相同的结果。不同
    是的他们的执行效率和执行方式。
     
      在后期的 Spark 版本中,DataSet 会逐步取代 RDD 和 DataFrame 成为唯一的 API 接口。 
     
     
     
     

    2.5.1 三者的共性 

      1、RDD、DataFrame、Dataset 全都是 spark 平台下的分布式弹性数据集,为处理超大型数据
    提供便利
      2、三者都有惰性机制,在进行创建、转换,如 map 方法时,不会立即执行,只有在遇到 Action
    如 foreach 时,三者才会开始遍历运算。
      3、三者都会根据 spark 的内存情况自动缓存运算,这样即使数据量很大,也不用担心会内存
    溢出
      4、三者都有 partition 的概念
      5、三者有许多共同的函数,如 filter,排序等
      6、在对 DataFrame 和 Dataset 进行操作许多操作都需要这个包进行支持
      import spark.implicits._
      7、DataFrame 和 Dataset 均可使用模式匹配获取各个字段的值和类型
     
    DataFrame: 
    testDF.map{
        case Row(col1:String,col2:Int)=>
            println(col1);println(col2)
            col1
        case _=>
            ""
    }
    Dataset: 
    case class Coltest(col1:String,col2:Int)extends Serializable //定义字段
    名和类型
        testDS.map{
        case Coltest(col1:String,col2:Int)=>
            println(col1);println(col2)
            col1
        case _=>
            ""
    }

    2.5.2 三者的区别 

    1. RDD:
      1)RDD 一般和 spark mlib 同时使用
      2)RDD 不支持 sparksql 操作
     
    2. DataFrame:
      1)与 RDD 和 Dataset 不同,DataFrame 每一行的类型固定为 Row,每一列的值没法直接访
    问,只有通过解析才能获取各个字段的值,如: 
    testDF.foreach{
        line =>
            val col1=line.getAs[String]("col1")
            val col2=line.getAs[String]("col2")
    }
      2)DataFrame 与 Dataset 一般不与 spark mlib 同时使用
      3)DataFrame 与 Dataset 均支持 sparksql 的操作,比如 select,groupby 之类,还能注册临时
    表/视窗,进行 sql 语句操作,如: 
    dataDF.createOrReplaceTempView("tmp")
    spark.sql("select ROW,DATE from tmp where DATE is not null order by DATE").show(100,false)
      4)DataFrame 与 Dataset 支持一些特别方便的保存方式,比如保存成 csv,可以带上表头,这
    样每一列的字段名一目了然 
    //保存
    val saveoptions = Map("header" -> "true", "delimiter" -> "	", "path" -> "hdfs://hadoop102:9000/test")
    datawDF.write.format("com.atguigu.spark.csv").mode(SaveMode.Overwrite).options(saveoptions).save()
    //读取 val options = Map("header" -> "true", "delimiter" -> " ", "path" -> "hdfs://hadoop102:9000/test") val datarDF= spark.read.options(options).format("com.atguigu.spark.csv").load()
    利用这样的保存方式,可以方便的获得字段名和列的对应,而且分隔符(delimiter)可以自由指
    定。
     
     
    3. Dataset:
      1)Dataset 和 DataFrame 拥有完全相同的成员函数,区别只是每一行的数据类型不同。
      2)DataFrame 也可以叫 Dataset[Row],每一行的类型是 Row,不解析,每一行究竟有哪些字
    段,各个字段又是什么类型都无从得知,只能用上面提到的 getAS 方法或者共性中的第七条提到
    的模式匹配拿出特定字段。而 Dataset 中,每一行是什么类型是不一定的,在自定义了 case class
    之后可以很自由的获得每一行的信息 
    case class Coltest(col1:String,col2:Int)extends Serializable //定义字段
    名和类型
    /**
    rdd
    ("a", 1)
    ("b", 1)
    ("a", 1)
    **/
    val test: Dataset[Coltest]=rdd.map{line=>
        Coltest(line._1,line._2)
      }.toDS
    test.map{
        line=>
          println(line.col1)
          println(line.col2)
      }

      可以看出,Dataset 在需要访问列中的某个字段时是非常方便的,然而,如果要写一些适配性

    很强的函数时,如果使用 Dataset,行的类型又不确定,可能是各种 case class,无法实现适配,这
    时候用 DataFrame 即 Dataset[Row]就能比较好的解决问题 
    --RDD -> DF/DS
        -- DF : 
                方式一:--rdd.map{x => val pa = x.split(","); (pa(0).trim,pa(1).trim)}.toDF("naem", "age")
                方式二:--case class People(name:String,age:String)
                    rdd.map{x => val pa = x.split(","); People(pa(0).trim,pa(1).trim)}.toDF
    
                --编程动态引入:
                    val rdd = sc.textFile("examples/src/main/resources/people.txt")
                    val schemaString = "name age"
                    val res29 = rdd.map{x => val pa = x.split(","); People(pa(0).trim,pa(1).trim)}
                    val fields = schemaString.split(" ").map(fieldName => StructField(fieldName, StringType, nullable = true))
                    val schema = StructType(fields)
                    spark.createDataFrame(res29,schema)
    
        -- DS : case class People(name:String,age:String)
                rdd.map{x => val pa = x.split(","); People(pa(0).trim,pa(1).trim)}.toDS

    scala> rdd.map{x => val pa = x.split(","); People(pa(0).trim,pa(1).trim)}.toDS
    res21: org.apache.spark.sql.Dataset[People] = [name: string, age: string]

    scala> rdd.map{x => val pa = x.split(","); (pa(0).trim,pa(1).trim)}.toDS
    res22: org.apache.spark.sql.Dataset[(String, String)] = [_1: string, _2: string]

    
    
    scala
    > val rdd = sc.textFile("examples/src/main/resources/people.txt") rdd: org.apache.spark.rdd.RDD[String] = examples/src/main/resources/people.txt MapPartitionsRDD[1] at textFile at <console>:24 scala> rdd.collect res1: Array[String] = Array(Michael, 29, Andy, 30, Justin, 19) scala> rdd.map{x => val pa = x.split(","); (pa(0).trim,pa(1).trim)} res2: org.apache.spark.rdd.RDD[(String, String)] = MapPartitionsRDD[2] at map at <console>:27 scala> res2.collect res3: Array[(String, String)] = Array((Michael,29), (Andy,30), (Justin,19)) scala> import spark.implicits._ import spark.implicits._ scala> res2.to toDF toDS toDebugString toJavaRDD toLocalIterator toString top scala> res2.toDF("name", "age") res5: org.apache.spark.sql.DataFrame = [name: string, age: string] scala> res5.show +-------+---+ | name|age| +-------+---+ |Michael| 29| | Andy| 30| | Justin| 19| +-------+---+ scala> case class People(name:String,age:String) defined class People scala> rdd.map{x => val pa = x.split(","); People(pa(0).trim,pa(1).trim)} res8: org.apache.spark.rdd.RDD[People] = MapPartitionsRDD[6] at map at <console>:32 scala> res8.collect res10: Array[People] = Array(People(Michael,29), People(Andy,30), People(Justin,19)) scala> res8.toDS res13: org.apache.spark.sql.Dataset[People] = [name: string, age: string] scala> res13.show +-------+---+ | name|age| +-------+---+ |Michael| 29| | Andy| 30| | Justin| 19| +-------+---+ scala> res8.toDF res15: org.apache.spark.sql.DataFrame = [name: string, age: string] scala> res15.show +-------+---+ | name|age| +-------+---+ |Michael| 29| | Andy| 30| | Justin| 19| +-------+---+ --DF -> RDD/DS --RDD DF.rdd //获取值,编译期不校验类型
    --case class People(name:String,age:String) DF.as[People]
    scala
    > val rdd = sc.textFile("examples/src/main/resources/people.txt") rdd: org.apache.spark.rdd.RDD[String] = examples/src/main/resources/people.txt MapPartitionsRDD[1] at textFile at <console>:24 scala> rdd.map{x => val pa = x.split(","); (pa(0).trim,pa(1).trim)}.toDF("c", "age") res0: org.apache.spark.sql.DataFrame = [name: string, age: string] scala> val df = res0 df: org.apache.spark.sql.DataFrame = [name: string, age: string] scala> df.rdd res2: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[7] at rdd at <console>:31 scala> res2.map(_.getString(1)).collect res4: Array[String] = Array(29, 30, 19) scala> res2.map(_.getString(0)).collect res5: Array[String] = Array(Michael, Andy, Justin) scala> res2.map(_.getAs[String](0)) res7: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[12] at map at <console>:33 scala> res2.map(_.getAs[String](0)).collect res8: Array[String] = Array(Michael, Andy, Justin) scala> val df = res0 df: org.apache.spark.sql.DataFrame = [name: string, age: string] scala> df.as[People] res16: org.apache.spark.sql.Dataset[People] = [name: string, age: string] --DS -> RDD/DF --RDD DS.rdd //获取值,编译期校验类型 DS.toDF scala> val rdd = sc.textFile("examples/src/main/resources/people.txt") rdd: org.apache.spark.rdd.RDD[String] = examples/src/main/resources/people.txt MapPartitionsRDD[1] at textFile at <console>:24 scala> case class People(name:String,age:String) defined class People scala> rdd.map{x => val pa = x.split(","); People(pa(0).trim,pa(1).trim)}.toDS res1: org.apache.spark.sql.Dataset[People] = [name: string, age: string] scala> val ds = res1 ds: org.apache.spark.sql.Dataset[People] = [name: string, age: string] scala> ds.rdd res3: org.apache.spark.rdd.RDD[People] = MapPartitionsRDD[9] at rdd at <console>:33 scala> res3.map(_.name) res10: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[14] at map at <console>:35 scala> res3.map(_.name).collect res11: Array[String] = Array(Michael, Andy, Justin) scala> ds.toDF res17: org.apache.spark.sql.DataFrame = [name: string, age: string]
     
     

    2.6 IDEA 创建 SparkSQL 程序

    IDEA 中程序的打包和运行方式都和 SparkCore 类似,Maven 依赖中需要添加新的依赖项:
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-sql_2.11</artifactId>
        <version>2.1.1</version>
    </dependency>
    程序如下:
     
    package com.lxl.sparksql
    import org.apache.spark.sql.SparkSession import org.apache.spark.{SparkConf, SparkContext} import org.slf4j.LoggerFactory
    object HelloWorld { def main(args: Array[String]) {
    //创建 SparkConf()并设置 App 名称 val spark = SparkSession .builder() .appName("Spark SQL basic example") //.config("spark.some.config.option", "some-value") .getOrCreate()
    //导入隐式转换 import spark.implicits._
    //读取本地文件,创建 DataFrame val df = spark.read.json("examples/src/main/resources/people.json")
    //打印 df.show()
    //DSL 风格:查询年龄在 21 岁以上的 df.filter($"age" > 21).show()
    //创建临时表 df.createOrReplaceTempView("persons")
    //SQL 风格:查询年龄在 21 岁以上的 spark.sql("SELECT * FROM persons where age > 21").show()
    //关闭连接 spark.stop() } }
     
     
     
    测试:
    import org.apache.spark.{SparkConf, SparkContext}
    import org.apache.spark.sql.SparkSession
    
    object HelloWorld {
    
      def main(args: Array[String]): Unit = {
    
        //获取sparkConf
        val conf = new SparkConf().setAppName("HelloWorld").setMaster("local[*]")
    
        //创建sparkcontext对象
        val sc = new SparkContext(conf)
    
        //获取sparkSession
    //    val spark = new SparkSession(sc)
        val spark = SparkSession.builder().config(conf).getOrCreate()
    
        //生成DataFrame
        val df = spark.read.json("D:\Data\Spark\课堂\people.json")
    
        //展示所有数据
        df.show()
    
        //DSL
        df.select("name").show()
    
        //SQL
        df.createTempView("people")
        spark.sql("select * from people").show()
    
        //关闭资源
        spark.close()
        sc.stop()
    
      }
    
    }

     结果:

    +----+-------+
    | age|   name|
    +----+-------+
    |null|Michael|
    |  30|   Andy|
    |  19| Justin|
    +----+-------+
    
    +-------+
    |   name|
    +-------+
    |Michael|
    |   Andy|
    | Justin|
    +-------+
    
    +----+-------+
    | age|   name|
    +----+-------+
    |null|Michael|
    |  30|   Andy|
    |  19| Justin|
    +----+-------+
     
     

    2.7 用户自定义函数

    在 Shell 窗口中可以通过 spark.udf 功能用户可以自定义函数。
     

    2.7.1 用户自定义 UDF 函数

    scala> val df = spark.read.json("examples/src/main/resources/people.json")
    df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
    
    scala> df.show()
    +----+-------+
    | age| name|
    +----+-------+
    |null|Michael|
    | 30| Andy|
    | 19| Justin|
    +----+-------+
    
    scala> spark.udf.register("addName", (x:String)=> "Name:"+x)
    res5: org.apache.spark.sql.expressions.UserDefinedFunction = UserDefinedFunction(,StringType,Some(List(StringType)))
    scala
    > df.createOrReplaceTempView("people")
    scala
    > spark.sql("Select addName(name), age from people").show() +-----------------+----+ |UDF:addName(name)| age| +-----------------+----+ | Name:Michael|null| | Name:Andy| 30| | Name:Justin| 19| +-----------------+----+
    scala> val rdd = sc.textFile("examples/src/main/resources/people.txt")
    rdd: org.apache.spark.rdd.RDD[String] = examples/src/main/resources/people.txt MapPartitionsRDD[18] at textFile at <console>:30
    
    scala> rdd.collect
    res20: Array[String] = Array(Michael, 29, Andy, 30, Justin, 19)
    
    scala> rdd.map{x => val pa = x.split(","); People(pa(0).trim,pa(1).trim)}.toDS
    res21: org.apache.spark.sql.Dataset[People] = [name: string, age: string]
    
    scala> rdd.map{x => val pa = x.split(","); (pa(0).trim,pa(1).trim)}.toDS
    res22: org.apache.spark.sql.Dataset[(String, String)] = [_1: string, _2: string]
    
    scala> val df = spark.read.json("examples/src/main/resources/people.json")
    df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
    
    scala> df.createTempView("people")
    
    scala> spark.sql("select * from people").show
    +----+-------+
    | age|   name|
    +----+-------+
    |null|Michael|
    |  30|   Andy|
    |  19| Justin|
    +----+-------+
    
    
    scala> spark.udf.register("addName",(x:String) => "name:" + x)
    res25: org.apache.spark.sql.expressions.UserDefinedFunction = UserDefinedFunction(<function1>,StringType,Some(List(StringType)))
    
    scala> spark.sql("select addName(name) as name from people").show
    +------------+
    |        name|
    +------------+
    |name:Michael|
    |   name:Andy|
    | name:Justin|
    +------------+
     
     

    2.7.2 用户自定义聚合函数

      强类型的 Dataset 和弱类型的 DataFrame 都提供了相关的聚合函数,如 count(),countDistinct(),
    avg(),max(),min()。除此之外,用户可以设定自己的自定义聚合函数。
     
      弱类型用户自定义聚合函数:通过继承 UserDefinedAggregateFunction 来实现用户自定义聚
    合函数。下面展示一个求平均工资的自定义聚合函数。
     
     
    import org.apache.spark.sql.expressions.MutableAggregationBuffer
    import org.apache.spark.sql.expressions.UserDefinedAggregateFunction
    import org.apache.spark.sql.types._
    import org.apache.spark.sql.Row
    import org.apache.spark.sql.SparkSession
    object MyAverage extends UserDefinedAggregateFunction {
      
    // 聚合函数输入参数的数据类型   def inputSchema: StructType = StructType(StructField("inputColumn", LongType) :: Nil)
      
    // 聚合缓冲区中值得数据类型   def bufferSchema: StructType = {     StructType(StructField("sum", LongType) :: StructField("count", LongType) :: Nil)   }
      
    // 返回值的数据类型   def dataType: DataType = DoubleType
      
    // 对于相同的输入是否一直返回相同的输出。   def deterministic: Boolean = true
      // 初始化   def initialize(buffer: MutableAggregationBuffer): Unit = {     // 存工资的总额     buffer(0) = 0L
        // 存工资的个数     buffer(1) = 0L   }
      
    // 相同 Execute 间的数据合并。   def update(buffer: MutableAggregationBuffer, input: Row): Unit = {     if (!input.isNullAt(0)) {       buffer(0) = buffer.getLong(0) + input.getLong(0)       buffer(1) = buffer.getLong(1) + 1     }   }
      
    // 不同 Execute 间的数据合并   def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {     buffer1(0) = buffer1.getLong(0) + buffer2.getLong(0)     buffer1(1) = buffer1.getLong(1) + buffer2.getLong(1)   }
      
    // 计算最终结果   def evaluate(buffer: Row): Double = buffer.getLong(0).toDouble /     buffer.getLong(1) }


    // 注册函数 spark.udf.register("myAverage", MyAverage) val df = spark.read.json("examples/src/main/resources/employees.json") df.createOrReplaceTempView("employees") df.show() // +-------+------+ // | name|salary| // +-------+------+ // |Michael| 3000| // | Andy| 4500| // | Justin| 3500| // | Berta| 4000| // +-------+------+

    val result = spark.sql("SELECT myAverage(salary) as average_salary FROM employees") result.show() // +--------------+ // |average_salary| // +--------------+ // | 3750.0| // +--------------+

       

      强类型用户自定义聚合函数:通过继承 Aggregator 来实现强类型自定义聚合函数,同样是求
    平均工资
    import org.apache.spark.sql.expressions.Aggregator
    import org.apache.spark.sql.Encoder
    import org.apache.spark.sql.Encoders
    import org.apache.spark.sql.SparkSession
    // 既然是强类型,可能有 case 类 case class Employee(name: String, salary: Long) case class Average(var sum: Long, var count: Long) object MyAverage extends Aggregator[Employee, Average, Double] {   // 定义一个数据结构,保存工资总数和工资总个数,初始都为 0   def zero: Average = Average(0L, 0L)
      
    // Combine two values to produce a new value. For performance, the   function may modify `buffer`
      
    // and return it instead of constructing a new object   def reduce(buffer: Average, employee: Employee): Average = {     buffer.sum += employee.salary     buffer.count += 1     buffer   }
      
    // 聚合不同 execute 的结果   def merge(b1: Average, b2: Average): Average = {     b1.sum += b2.sum     b1.count += b2.count     b1   }
      
    // 计算输出   def finish(reduction: Average): Double = reduction.sum.toDouble /   reduction.count
      
    // 设定之间值类型的编码器,要转换成 case 类   // Encoders.product 是进行 scala 元组和 case 类转换的编码器   def bufferEncoder: Encoder[Average] = Encoders.product
      
    // 设定最终输出值的编码器   def outputEncoder: Encoder[Double] = Encoders.scalaDouble }

      import spark.implicits._   val ds
    = spark.read.json("examples/src/main/resources/employees.json").as[Employee]   ds.show()   // +-------+------+   // | name|salary|   // +-------+------+   // |Michael| 3000|   // | Andy| 4500|   // | Justin| 3500|   // | Berta| 4000|   // +-------+------+   // Convert the function to a `TypedColumn` and give it a name

      val averageSalary = MyAverage.toColumn.name("average_salary")   val result = ds.select(averageSalary)   result.show()   // +--------------+   // |average_salary|   // +--------------+   // | 3750.0|   // +--------------+
     
     
    笔记:
     
    数据:
    {"name":"Michael", "age":11}
    {"name":"Andy", "age":30}
    {"name":"Justin", "age":19}
    代码:
    package com.lxl
    
    import org.apache.spark.SparkConf
    import org.apache.spark.sql.expressions.{MutableAggregationBuffer, UserDefinedAggregateFunction}
    import org.apache.spark.sql.types._
    import org.apache.spark.sql.{Row, SparkSession}
    
    class CustomerAvg extends UserDefinedAggregateFunction{
    
      //输入的类型
      override def inputSchema: StructType = StructType(StructField("salary", LongType)::Nil)
    
      //缓存数据的类型
      override def bufferSchema: StructType = StructType(StructField("sum", LongType) :: StructField("count", LongType) :: Nil)
    
      //返回值的类型
      override def dataType: DataType = DoubleType
    
      //幂等性
      override def deterministic: Boolean = true
    
      //初始化
      override def initialize(buffer: MutableAggregationBuffer): Unit = {
        buffer(0) = 0L
        buffer(1) = 0L
      }
    
      //更新
      override def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
        buffer(0) = buffer.getLong(0) + input.getLong(0)
        buffer(1) = buffer.getLong(1) + 1L
      }
    
      //合并
      override def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {
        buffer1(0) = buffer1.getLong(0) + buffer2.getLong(0)
        buffer1(1) = buffer1.getLong(1) + buffer2.getLong(1)
      }
    
      //最终执行的方法
      override def evaluate(buffer: Row): Double = {
        buffer.getLong(0) / buffer.getLong(1)
      }
    }
    
    object CustomerAvg {
      def main(args: Array[String]): Unit = {
    
        //获取配置信息
        val conf = new SparkConf().setMaster("local[*]").setAppName("MyAvg")
    
        //生成SparkSession对象
        val spark = SparkSession.builder().config(conf).getOrCreate()
    
        spark.udf.register("MyAvg", new CustomerAvg)
    
        val df = spark.read.json("D:\Data\Spark\课堂\people.json")
    
        df.createTempView("people")
    
        spark.sql("select MyAvg(age) avg_age from people").show()
    
        spark.stop()
    
    
    
      }
    }
     结果:
    +-------+
    |avg_age|
    +-------+
    |   20.0|
    +-------+
    
    
    Process finished with exit code 0
     
     
     
     
     
     
     
     
     
     
     
  • 相关阅读:
    Android json操作之取得一个对象
    Uubntu E: Sub-process /usr/bin/dpkg returned an error code问题的解决办法
    转 Android
    Android 将从网络获取的数据缓存到私有文件
    Android 每隔3s更新一次title
    Android UI主线程与子线程
    Android 解析JSON数组
    MySql中的内外联结查询
    MySQL执行外部sql脚本
    Ubuntu 下启动/停止/重启mysql服务
  • 原文地址:https://www.cnblogs.com/LXL616/p/11149053.html
Copyright © 2020-2023  润新知