• cs20_2-1


    1. Agenda

    • Basic operations

    • Tensor types

    • Importing data

    • Lazy loading

    2. Basic operations

    1. tensorborad使用介绍

    2. Constants, Sequences, Variables, Ops

      • constants:

        • normal tensors: e.g. 1-dim,2-dim,more-dim
        • special tensors, e.g. zeros(), zeros_like(), ones(), ones_like(), fill()
      • sequences:

        • Constants as sequences: e.g. lin_space(), range()

        • Randomly Generated Constants: e.g.

          tf.random_normal
          tf.truncated_normal
          tf.random_uniform
          tf.random_shuffle
          tf.random_crop
          tf.multinomial
          tf.random_gamma
          
          • truncated_normal:
            • 截断的正态分布中输出随机值。 生成的值服从具有指定均值和标准方差的正态分布,如果生成的值落在(μ-2σ,μ+2σ)之外,则丢弃这个生成的值重新选择。
            • 在正态分布的曲线中,横轴区间(μ-σ,μ+σ)内的面积为68.268949%。
              横轴区间(μ-2σ,μ+2σ)内的面积为95.449974%。
              横轴区间(μ-3σ,μ+3σ)内的面积为99.730020%。
              X落在(μ-3σ,μ+3σ)以外的概率小于千分之三,在实际问题中常认为相应的事件是不会发生的,基本上可以把区间(μ-3σ,μ+3σ)看作是随机变量X实际可能的取值区间,这称之为正态分布的“3σ”原则。
            • 在tf.truncated_normal中如果x的取值在区间(μ-2σ,μ+2σ)之外则重新进行选择。这样保证了生成的值都在均值附近。(it doesn’t create any values more than two standard deviations away from its mean.)
            • tf.set_random_seed(seed)
      • Operations

    3. Tensor types

    1. TensorFlow takes Python natives types: boolean, numeric (int, float), strings

    2. tensor包括:0-dim(scalar), 1-dim(vector), 2-dim(matrix), more-dim.

      Single values will be converted to 0-d tensors (or scalars), lists of values will be converted to 1-d tensors (vectors), lists of lists of values will be converted to 2-d tensors (matrices), and so on.

    3. e.g.

      t_0 = 19 			         			# scalars are treated like 0-d tensors
      tf.zeros_like(t_0)                  			# ==> 0
      tf.ones_like(t_0)                    			# ==> 1
      
      t_1 = [b"apple", b"peach", b"grape"] 	# 1-d arrays are treated like 1-d tensors
      tf.zeros_like(t_1)                   			# ==> [b'' b'' b'']
      tf.ones_like(t_1)                    			# ==> TypeError: Expected string, got 1 of type 'int' instead.
      
      t_2 = [[True, False, False],
        [False, False, True],
        [False, True, False]]         		# 2-d arrays are treated like 2-d tensors
      
      tf.zeros_like(t_2)                   			# ==> 3x3 tensor, all elements are False
      tf.ones_like(t_2)                    			# ==> 3x3 tensor, all elements are True
      
    4. TensorFlow Data Types

    5. TF vs NP Data Types

      TensorFlow integrates seamlessly with NumPy
      tf.int32 == np.int32 			# ⇒ True
      
      Can pass numpy types to TensorFlow ops
      tf.ones([2, 2], np.float32) 	# ⇒ [[1.0 1.0], [1.0 1.0]]
      
      For  tf.Session.run(fetches): if the requested fetch is a Tensor , output will be a NumPy ndarray.
      sess = tf.Session()
      a = tf.zeros([2, 3], np.int32)
      print(type(a))  			# ⇒ <class 'tensorflow.python.framework.ops.Tensor'>
      a = sess.run(a)
      print(type(a))  			# ⇒ <class 'numpy.ndarray'>
      
      
    6. Use TF DType when possible

      • Python native types: TensorFlow has to infer Python type(转化有计算成本)
      • NumPy arrays: NumPy is not GPU compatible
    7. What’s wrong with constants?、

      • Constants are stored in the graph definition(导致graph太大,且不灵活)
      • This makes loading graphs expensive when constants are big
        • Only use constants for primitive types.
        • Use variables or readers for more data that requires more memory

    4. Importing data

    1. Variables:tf.Variable, tf.get_variable

      1. tf.Variable

        tf.Variable holds several ops:
        
        x = tf.Variable(...) 
        
        x.initializer # init op
        x.value() # read op
        x.assign(...) # write op
        x.assign_add(...) # and more
        
      2. tf.get_variable:

      3. The easiest way is initializing all variables at once:

        • Initializer is an op. You need to execute it within the context of a session
        • sess.run(tf.global_variables_initializer())
      4. Initialize only a subset of variables:

        • sess.run(tf.variables_initializer([a, b])) 仅仅Init了a,b这两个op variables
      5. Initialize a single variable:

        • sess.run(W.initializer)
      6. Eval() a variable (效果类似于W.value()和sess.run(W))

      7. tf.Variable.assign(), tf.assign_add(), tf.assign_sub()

      8. Each session maintains its own copy of variables

      9. Control Dependencies

        # defines which ops should be run first
        # your graph g have 5 ops: a, b, c, d, e
            g = tf.get_default_graph()
            with g.control_dependencies([a, b, c]):
                # 'd' and 'e' will only run after 'a', 'b', and 'c' have executed.
                d = ...
                e = …
        
    2. Placeholder:

      1. Why placeholders?

        We, or our clients, can later supply their own data when they need to execute the computation.

      2. a = tf.placeholder(dtype, shape=None, name=None)
        sess.run(c, feed_dict={a: [1, 2, 3]})) 	# the tensor a is the key, not the string ‘a’
        # shape=None means that tensor of any shape will be accepted as value for placeholder.
        # shape=None is easy to construct graphs, but nightmarish for debugging
        # shape=None also breaks all following shape inference, which makes many ops not work because they expect certain rank.
        # The session will look at the graph, trying to think: hmm, how can I get the value of a, then it computes all the nodes that leads to a.
        
        
      3. What if want to feed multiple data points in?

        # You have to do it one at a time
        with tf.Session() as sess:
        	for a_value in list_of_values_for_a:
        	print(sess.run(c, {a: a_value}))
        
      4. You can feed_dict any feedable tensor.Placeholder is just a way to indicate that something must be fed:

        tf.Graph.is_feedable(tensor) 
        # True if and only if tensor is feedable.
        
      5. Feeding values to TF ops :

        # create operations, tensors, etc (using the default graph)
        a = tf.add(2, 5)
        b = tf.multiply(a, 3)
        
        with tf.Session() as sess:
        	# compute the value of b given a is 15
        	sess.run(b, feed_dict={a: 15}) 				# >> 4
        

    5. Lazy loading

    1. The trap of lazy loading*

    2. What’s lazy loading?

      • Defer creating/initializing an object until it is needed
      • Lazy loading Example: (见cs_2_1的代码test_26,test_27)
    3. Both give the same value of z, What’s the problem? (见cs_2_1的代码test_26,test_27)

      1. normal loding: Node “Add” added once to the graph definition

      2. lazy loding: Node “Add” added 10 times to the graph definition Or as many times as you want to compute z

      3. Imagine you want to compute an op, thousands, or millions of times!

        • Your graph gets bloated Slow to load Expensive to pass around, this is one of the most common TF non-bug bugs I’ve seen on GitHub.
        • 所以要禁止定义匿名op节点
      4. Solution:

        1. Separate definition of ops from computing/running ops

        2. Use Python property to ensure function is also loaded once the first time it is called

          python property

  • 相关阅读:
    核新同花顺数据结构
    python发送各类邮件的主要方法
    Tesseract-OCR引擎 入门
    ruby函数回调的实现方法
    软件单元测试之我见
    cocos cteator中tiled模式 用图集容易出线
    入坑CCC遇到的一些坑啊
    关于委托的理解
    火狐浏览器的三个坑
    抗锯齿的BUG
  • 原文地址:https://www.cnblogs.com/LS1314/p/10366203.html
Copyright © 2020-2023  润新知