• P4180 严格次小生成树


    https://www.luogu.org/problemnew/show/P4180

    先吐槽一波垃圾蓝书,n^2logn有个矩阵用

    先求出最小生成树,显然的,次小生成树应该是向MST中删一条树边加一条非树边

    设加入的边连接u,v,为保证次小,应该删去MST中u->v路径上的边权最大值

    考虑一个细节:如果加入的边和u->v上的边权最大值相同,此时应删去次大值

    所以我们要完成这些任务:求树上两点之间边权的最大值、次大值

    LCA即可

    哦对inf要开大,因为tot最大可达10 ^ 14,开小了会WA掉50%...

    #include<cstdio>
    #include<iostream>
    #include<algorithm>
    #include<cstring>
    #include<map>
    #include<cmath>
    using namespace std;
    #define LM qwq
    typedef int mainint;
    #define int long long
    inline int read()
    {
        int ans = 0,op = 1;
        char ch = getchar();
        while(ch < '0' || ch > '9')
        {
            if(ch == '-') op = -1;
            ch = getchar();
        }
        while(ch >= '0' && ch <= '9')
        {
            (ans *= 10) += ch - '0';
            ch = getchar();
        }
        return ans * op;
    }
    #define inf 99999999999999
    const int maxn = 1e5 + 5;
    int n,m;
    struct edge
    {
        int to,next,cost;
    }e[maxn * 6];
    struct ed
    {
        int u,v,w;
        bool operator < (const ed& b) const
        {
            return w < b.w;
        }
    }a[maxn * 6];
    bool vis[maxn * 6];
    int fir[maxn],alloc;
    void adde(int u,int v,int w)
    {
        e[++alloc].next = fir[u];
        fir[u] = alloc;
        e[alloc].to = v;
        e[alloc].cost = w;
        swap(u,v);
        e[++alloc].next = fir[u];
        fir[u] = alloc;
        e[alloc].to = v;
        e[alloc].cost = w;    
    }
    
    int par[maxn];
    int find(int x) { return x == par[x] ? x : par[x] = find(par[x]); }
    void merge(int x,int y) { x = find(x),y = find(y); par[x] = y; }
    bool same(int x,int y) { return find(x) == find(y); }
    int tot;
    void kruskal()
    {
        for(int i = 1;i <= n;i++) par[i] = i;
        sort(a + 1,a + 1 + m);
        for(int i = 1;i <= m;i++)
        {
            int u = a[i].u,v = a[i].v;
            if(same(u,v)) continue;
            merge(u,v);
            adde(u,v,a[i].w);
            vis[i] = 1;
            tot += a[i].w;
        }
    }
    
    int dep[maxn],f[maxn][21],mx[maxn][21],mi[maxn][21];
    void dfs(int u,int fa)
    {
        dep[u] = dep[fa] + 1;
        for(int i = 1;i <= 20;i++)
        {
            f[u][i] = f[f[u][i - 1]][i - 1];
            mx[u][i] = max(mx[u][i - 1],mx[f[u][i - 1]][i - 1]);
            mi[u][i] = max(mi[u][i - 1],mi[f[u][i - 1]][i - 1]);
            if(mx[u][i - 1] > mx[f[u][i - 1]][i - 1]) mi[u][i] = max(mi[u][i],mx[f[u][i - 1]][i - 1]);
            else if(mx[u][i - 1] < mx[f[u][i - 1]][i - 1]) mi[u][i] = max(mi[u][i],mx[u][i - 1]);
        }
        for(int i = fir[u];i;i = e[i].next)
        {
            int v = e[i].to,w = e[i].cost;
            if(v == fa) continue;
            mx[v][0] = w;
            mi[v][0] = -inf;
            f[v][0] = u;
            dfs(v,u);
        }
    }
    int lca(int x,int y)
    {
        if(dep[x] < dep[y]) swap(x,y);
        for(int i = 20;i >= 0;i--)
        {
            if(dep[f[x][i]] >= dep[y]) x = f[x][i];
            if(x == y) return x;
        }
        for(int i = 20;i >= 0;i--)
            if(f[x][i] != f[y][i]) x = f[x][i],y = f[y][i];
        return f[x][0];
    }
    
    int get_max(int u,int v,int val)
    {
        int ans = -inf;
        for(int i = 20;i >= 0;i--)
        {
            if(dep[f[u][i]] >= dep[v])
            {
                if(mx[u][i] != val) ans = max(ans,mx[u][i]);
                else ans = max(ans,mi[u][i]);
                u = f[u][i];
            }
        }
        return ans;
    }
    mainint main()
    {
        n = read(),m = read();
        for(int i = 1;i <= m;i++)
            a[i].u = read(),a[i].v = read(),a[i].w = read();
        kruskal();
        mi[1][0] = -inf;
        dfs(1,0);
        int ans = inf;
        for(int i = 1;i <= m;i++)
        {
            if(vis[i]) continue;
            int u = a[i].u,v = a[i].v,w = a[i].w;
            int fa = lca(u,v);
            //printf("%d %d %d
    ",u,v,fa); 
            int maxm = max(get_max(u,fa,w),get_max(v,fa,w));
            //cout << maxm << endl;
            ans = min(ans,tot - maxm + w);
        }
        printf("%lld",ans);
    }
  • 相关阅读:
    总结报告的感想
    第14、15週PTA題目的處理
    PTA題目的處理(三)
    PTA题目的處理(四)
    PTA題目的處理(二)
    PTA題目的處理(一)
    國慶和中秋的學習成果
    剛進入大學一個月的總結和作業
    【接口平台】too many values to unpack
    【接口平台】生成静态模拟数据
  • 原文地址:https://www.cnblogs.com/LM-LBG/p/10650580.html
Copyright © 2020-2023  润新知