首先显然下楼的操作一定是不优的,所以只要考虑上楼
设 $f[i]$ 表示到第 $i$ 层时需要的最少时间
那么首先考虑走楼梯,有转移,$f[i]=f[i-1]+a[i-1]$
然后考虑坐电梯有:$f[i]=f[j]+(sum_{k=j}^{i-1}b[k])+c$
显然那个 $sum b$ 可以用前缀和搞一下,那么 $f[i]=f[j]+sum[i-1]-sum[j-1]+c$
我们 $dp$ 转移的时候只要维护一个当前 $f[j]-sum[j-1]$ 的最小值 $mi$ 即可
即 $f[i]=mi+sum[i-1]+c$
别问我为什么要强行写个线段树,我脑抽了
#include<iostream> #include<cstdio> #include<algorithm> #include<cstring> #include<cmath> using namespace std; typedef long long ll; inline int read() { int x=0,f=1; char ch=getchar(); while(ch<'0'||ch>'9') { if(ch=='-') f=-1; ch=getchar(); } while(ch>='0'&&ch<='9') { x=(x<<1)+(x<<3)+(ch^48); ch=getchar(); } return x*f; } const int N=2e5+7; const ll INF=1e18; ll n,m,A[N],B[N]; struct SegTree { ll t[N<<2]; inline void ins(int o,int l,int r,int pos,int v) { if(l==r) { t[o]+=v; return; } int mid=l+r>>1; pos<=mid ? ins(o<<1,l,mid,pos,v) : ins(o<<1|1,mid+1,r,pos,v); t[o]=min(t[o<<1],t[o<<1|1]); } inline ll query(int o,int l,int r,int ql,int qr) { if(l>=ql&&r<=qr) return t[o]; if(l>qr||r<ql) return INF; int mid=l+r>>1; return min(query(o<<1,l,mid,ql,qr),query(o<<1|1,mid+1,r,ql,qr)); } }T; ll f[N]; int main() { n=read(),m=read(); for(int i=2;i<=n;i++) A[i]=read(); for(int i=2;i<=n;i++) B[i]=B[i-1]+read(); for(int i=2;i<=n;i++) { f[i]=f[i-1]+A[i]; f[i]=min(f[i],T.query(1,1,n,1,i-1)+B[i]+m); T.ins(1,1,n,i,f[i]-B[i]); } for(int i=1;i<=n;i++) printf("%lld ",f[i]); puts(""); return 0; }