• P2522 [HAOI2011]Problem b


    传送门

    对于每次询问 $a,b,c,d,n$ 答案就是 $f[n]=sum_{i=a}^{b}sum_{j=c}^{d}[gcd(i,j)==n]$

    看到熟悉的 $gcd$ ,莫比乌斯反演

    设 $F[n]=sum_{i=a}^{b}sum_{j=c}^{d}[n|gcd(i,j)]$,那么 $F[n]=sum_{n|d}f[d]$

    并且易知 $F[n]=(left lfloor frac{b}{n} ight floor-left lfloor frac{a-1}{n} ight floor) (left lfloor frac{d}{n} ight floor-left lfloor frac{c-1}{n} ight floor)$

    直接反演:$f[n]=sum_{n|d} mu (d/n) F[d]=sum_{n|d} mu (d/n) (left lfloor frac{b}{n} ight floor-left lfloor frac{a-1}{n} ight floor) (left lfloor frac{d}{n} ight floor-left lfloor frac{c-1}{n} ight floor)$

    枚举 $n$ 的倍数 $k$:变成 $f[n]=sum_{k} mu (k) (left lfloor frac{b}{kn} ight floor-left lfloor frac{a-1}{kn} ight floor) (left lfloor frac{d}{kn} ight floor-left lfloor frac{c-1}{kn} ight floor)$

    因为 $left lfloor frac{a-1}{kx} ight floor=left lfloor frac{left lfloor frac{a-1}{x} ight floor}{k} ight floor$

    所以 $f[n]=sum_{k} mu (k) (left lfloor frac{ left lfloor frac{b}{n} ight floor }{k} ight floor-left lfloor frac{left lfloor frac{a}{n} ight floor}{k} ight floor) (left lfloor frac{left lfloor frac{d}{n} ight floor}{k} ight floor-left lfloor frac{left lfloor frac{c}{n} ight floor}{k} ight floor)$

    然后就可以数论分块了

    总复杂度 $O( n sqrt(n) )$

    注意代码中的 $k$ 就是指前面的 $n$

    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<cmath>
    #include<cstring>
    using namespace std;
    typedef long long ll;
    inline int read()
    {
        int x=0,f=1; char ch=getchar();
        while(ch<'0'||ch>'9') { if(ch=='-') f=-1; ch=getchar(); }
        while(ch>='0'&&ch<='9') { x=(x<<1)+(x<<3)+(ch^48); ch=getchar(); }
        return x*f;
    }
    const int N=2e6+7,M=5e4;
    int Q,a,b,c,d,k,pri[N],mu[N],tot;
    ll ans;
    bool not_pri[N];
    void pre()
    {
        mu[1]=1;
        for(int i=2;i<=M;i++)
        {
            if(!not_pri[i]) pri[++tot]=i,mu[i]=-1;
            for(int j=1;j<=tot;j++)
            {
                ll t=1ll*i*pri[j]; if(t>M) break;
                not_pri[t]=1; if(!(i%pri[j])) break;
                mu[t]=-mu[i];
            }
        }
        for(int i=2;i<=M;i++) mu[i]+=mu[i-1];
    }
    int main()
    {
        pre(); Q=read();
        while(Q--)
        {
            a=read(),b=read(),c=read(),d=read(),k=read();
            ans=0; a--,c--;/*注意a--,c--之后a,c可能为0*/ a/=k,b/=k,c/=k,d/=k;
            int mi=min(b,d);
            for(int l=1,r;l<=mi;l=r+1)
            {
                r=min( b/(b/l) , d/(d/l) );
                if(a/l) r=min(r,a/(a/l)); if(c/l) r=min(r,c/(c/l));//注意特判a,c等于0的情况
                ans+=1ll*(mu[r]-mu[l-1])*(b/l-a/l)*(d/l-c/l);
            }
            printf("%lld
    ",ans);
        }
        return 0;
    }
  • 相关阅读:
    重温.NET Remoting(四)
    asp.net mvc3的变态错误
    绝对定位与相对低位的应用
    Tsql script for Job
    Entlib5.0之数据查询
    Jquery Mobile dialog的生命周期
    关于委托Lamda表达式等的一个小例子
    网上摘录 数据分组处理
    Oracle 要点摘录
    [原創]另一種思路固定URL及.NET實現
  • 原文地址:https://www.cnblogs.com/LLTYYC/p/11135136.html
Copyright © 2020-2023  润新知