• codeforces 1096 题解


    A:

    发现最优的方案一定是选 $ l $ 和 $ 2 * l $,题目保证有解,直接输出即可

    #include <bits/stdc++.h>
    #define Fast_cin ios::sync_with_stdio(false), cin.tie();
    #define rep(i, a, b) for(register int i = a; i <= b; i++)
    #define per(i, a, b) for(register int i = a; i >= b; i--)
    #define DEBUG(x) cerr << "DEBUG" << x << " >>> " << endl;
    using namespace std;
    
    typedef unsigned long long ull;
    typedef long long ll;
    
    template <typename _T>
    inline void read(_T &f) {
        f = 0; _T fu = 1; char c = getchar();
        while(c < '0' || c > '9') { if(c == '-') fu = -1; c = getchar(); }
        while(c >= '0' && c <= '9') { f = (f << 3) + (f << 1) + (c & 15); c = getchar(); }
        f *= fu;
    }
    
    template <typename T>
    void print(T x) {
        if(x < 0) putchar('-'), x = -x;
        if(x < 10) putchar(x + 48);
        else print(x / 10), putchar(x % 10 + 48);
    }
    
    template <typename T>
    void print(T x, char t) {
        print(x); putchar(t);
    }
    
    int T, l, r; 
    
    int main() {
    	read(T);
    	while(T--) {
    		read(l); read(r);
    		print(l, ' '); print(2 * l, '
    ');
    	}
    	return 0;
    }
    

    B:

    情况 1:所有字母都相同,输出 $ n * (n - 1) / 2 $ 即可
    情况 2:左边有连续 $ x $ 个字母相同,右边有 $ y $ 个,第一个字母和最后一个字符相同,输出 $ (x + 1) * (y + 1) $
    情况 3:左边有连续 $ x $ 个字母相同,右边有 $ y $ 个,第一个字母和最后一个字符不同,输出 $ x + y + 2 - 1 $,最后的 $ -1 $ 是因为整个串被算了 $ 2 $ 次

    #include <bits/stdc++.h>
    #define Fast_cin ios::sync_with_stdio(false), cin.tie();
    #define rep(i, a, b) for(register int i = a; i <= b; i++)
    #define per(i, a, b) for(register int i = a; i >= b; i--)
    #define DEBUG(x) cerr << "DEBUG" << x << " >>> " << endl;
    using namespace std;
    
    typedef unsigned long long ull;
    typedef long long ll;
    
    template <typename _T>
    inline void read(_T &f) {
        f = 0; _T fu = 1; char c = getchar();
        while(c < '0' || c > '9') { if(c == '-') fu = -1; c = getchar(); }
        while(c >= '0' && c <= '9') { f = (f << 3) + (f << 1) + (c & 15); c = getchar(); }
        f *= fu;
    }
    
    template <typename T>
    void print(T x) {
        if(x < 0) putchar('-'), x = -x;
        if(x < 10) putchar(x + 48);
        else print(x / 10), putchar(x % 10 + 48);
    }
    
    template <typename T>
    void print(T x, char t) {
        print(x); putchar(t);
    }
    
    const int N = 2e5 + 5, md = 998244353;
    
    char c[N];
    int cnt[23333];
    int n, cut1 = -1, cut2 = -1;
    
    inline int mul(int x, int y) { return (ll)x * y % md; }
    
    int main() {
    	read(n); scanf("%s", c + 1);
    	for(register int i = 2; i <= n; i++) if(c[i] != c[i - 1]) { cut1 = i - 1; break; }
    	for(register int i = n - 1; i >= 1; i--) if(c[i] != c[i + 1]) { cut2 = i + 1; break; }
    	if(cut1 == -1) cout << (ll)n * (n - 1) / 2 % md << endl;
    	else if(c[1] == c[n]) cout << mul(cut1 + 1, n - cut2 + 2) << endl;
    	else cout << cut1 + 1 + n - cut2 + 2 - 1 << endl;
    	return 0;
    }
    

    C:

    答案本质上是把一个圆切成答案份

    那么圆心角确定了,就可以算出一个圆周角的大小,如果切成 360 份可以拼出任意角度,所以枚举这个角度即可

    #include <bits/stdc++.h>
    #define Fast_cin ios::sync_with_stdio(false), cin.tie();
    #define rep(i, a, b) for(register int i = a; i <= b; i++)
    #define per(i, a, b) for(register int i = a; i >= b; i--)
    #define DEBUG(x) cerr << "DEBUG" << x << " >>> " << endl;
    using namespace std;
    
    typedef unsigned long long ull;
    typedef long long ll;
    
    template <typename _T>
    inline void read(_T &f) {
        f = 0; _T fu = 1; char c = getchar();
        while(c < '0' || c > '9') { if(c == '-') fu = -1; c = getchar(); }
        while(c >= '0' && c <= '9') { f = (f << 3) + (f << 1) + (c & 15); c = getchar(); }
        f *= fu;
    }
    
    template <typename T>
    void print(T x) {
        if(x < 0) putchar('-'), x = -x;
        if(x < 10) putchar(x + 48);
        else print(x / 10), putchar(x % 10 + 48);
    }
    
    template <typename T>
    void print(T x, char t) {
        print(x); putchar(t);
    }
    
    int T;
    
    int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); }
    
    int main() {
    	read(T); while(T--) {
    		int d; read(d); int ans = -1;
    		for(register int i = 3; i <= 23333; i++) {
    			if(d * i % 180 == 0 && d <= 180 - 360 / (double)i) {
    				ans = i; break;
    			}
    		}
    		print(ans, '
    ');
    	}
    	return 0;
    }
    

    D:

    $ f[i][j] $ 表示到了第 $ i $ 个字母,$ hard $ 已经匹配到了第 $ j $ 个字母的最小代价

    直接 $ dp $ 即可

    #include <bits/stdc++.h>
    #define int long long
    #define Fast_cin ios::sync_with_stdio(false), cin.tie();
    #define rep(i, a, b) for(register int i = a; i <= b; i++)
    #define per(i, a, b) for(register int i = a; i >= b; i--)
    #define DEBUG(x) cerr << "DEBUG" << x << " >>> " << endl;
    using namespace std;
    
    typedef unsigned long long ull;
    typedef long long ll;
    
    template <typename _T>
    inline void read(_T &f) {
        f = 0; _T fu = 1; char c = getchar();
        while(c < '0' || c > '9') { if(c == '-') fu = -1; c = getchar(); }
        while(c >= '0' && c <= '9') { f = (f << 3) + (f << 1) + (c & 15); c = getchar(); }
        f *= fu;
    }
    
    template <typename T>
    void print(T x) {
        if(x < 0) putchar('-'), x = -x;
        if(x < 10) putchar(x + 48);
        else print(x / 10), putchar(x % 10 + 48);
    }
    
    template <typename T>
    void print(T x, char t) {
        print(x); putchar(t);
    }
    
    const int N = 1e5 + 5;
    
    int f[N][5], w[N];
    char c[N];
    int n;
    
    int calc(char t) {
    	if(t == 'h') return 1;
    	if(t == 'a') return 2;
    	if(t == 'r') return 3;
    	if(t == 'd') return 4;
    	return 0;
    }
    
    #undef int
    int main() {
    #define int long long
    	memset(f, -1, sizeof(f));
    	read(n); scanf("%s", c + 1);
    	for(register int i = 1; i <= n; i++) read(w[i]);
    	f[0][0] = 0;
    	for(register int i = 0; i < n; i++) {
    		int val = calc(c[i + 1]);
    		for(register int j = 0; j <= 3; j++) {
    			if(f[i][j] == -1) continue;
    			if(val == j + 1) {
    				if(f[i + 1][j + 1] == -1) f[i + 1][j + 1] = f[i][j];
    				else f[i + 1][j + 1] = min(f[i + 1][j + 1], f[i][j]);
    				if(f[i + 1][j] == -1) f[i + 1][j] = f[i][j] + w[i + 1];
    				else f[i + 1][j] = min(f[i + 1][j], f[i][j] + w[i + 1]);
    			} else {
    				if(f[i + 1][j] == -1) f[i + 1][j] = f[i][j];
    				else f[i + 1][j] = min(f[i + 1][j], f[i][j]);
    			}
    		}
    	}
    	int ans = f[n][0];
    	for(register int i = 0; i <= 3; i++) if(f[n][i] != -1) ans = min(ans, f[n][i]);
    	cout << ans << endl;
    	return 0;
    }
    

    E:

    没写出来,先咕了

    update:2019.1.2

    去年不会这题,今年来补

    $ n $ 为人数,总分为 $ s $,自己的下限 $ r $ , $ c $ 为组合数,枚举有多少个人跟自己得分相同,自己的得分 $ j $,对答案的贡献是 $ C[n - 1][i - 1] * frac{1}{i} * calc(n - i, s - i * j, j) $

    $ calc( n, s, big ) $ 表示有 $ n $ 个人,总分为 $ s $,每个人的得分都 $ < big $ 的方案数,这个可以通过容斥求出

    总方案数可以用隔板法求出是 $ C[s - r + n - 1][n - 1] $,乘上这个的逆元即可

    #include <bits/stdc++.h>
    #define CIOS ios::sync_with_stdio(false);
    #define rep(i, a, b) for(register int i = a; i <= b; i++)
    #define per(i, a, b) for(register int i = a; i >= b; i--)
    #define DEBUG(x) cerr << "DEBUG" << x << " >>> ";
    using namespace std;
    
    typedef unsigned long long ull;
    typedef long long ll;
    
    template <typename T>
    inline void read(T &f) {
    	f = 0; T fu = 1; char c = getchar();
    	while (c < '0' || c > '9') { if (c == '-') fu = -1; c = getchar(); }
    	while (c >= '0' && c <= '9') { f = (f << 3) + (f << 1) + (c & 15); c = getchar(); }
    	f *= fu;
    }
    
    template <typename T>
    void print(T x) {
    	if (x < 0) putchar('-'), x = -x;
    	if (x < 10) putchar(x + 48);
    	else print(x / 10), putchar(x % 10 + 48);
    }
    
    template <typename T>
    void print(T x, char t) {
    	print(x); putchar(t);
    }
    
    const int N = 5005, md = 998244353;
    
    inline int mul(int x, int y) { return (ll)x * y % md; }
    
    inline int add(int x, int y) {
    	x += y;
    	if(x >= md) x -= md;
    	return x;
    }
    
    inline int sub(int x, int y) {
    	x -= y;
    	if(x < 0) x += md;
    	return x;
    }
    
    inline int fpow(int x, int y) {
    	int ans = 1;
    	while(y) {
    		if(y & 1) ans = mul(ans, x);
    		y >>= 1; x = mul(x, x);
    	}
    	return ans;
    }
    
    int C[N + 105][105], inv[N];
    int n, s, r, ans;
    
    int calc(int n, int s, int big) {
    	if(n == 0) return s == 0;
    	int ans = 0;
    	for(register int i = 0, opt = 1; i <= n && i * big <= s; i++, opt = md - opt)
    		ans = add(ans, mul(opt, mul(C[s - i * big + n - 1][n - 1], C[n][i])));
    	return ans;
    }
    
    int main() {
    	read(n); read(s); read(r);
    	for(register int i = 0; i <= s + n; i++) {
    		C[i][0] = 1;
    		for(register int j = 1; j <= i && j <= n; j++)
    			C[i][j] = add(C[i - 1][j - 1], C[i - 1][j]);
    	}
    	for(register int i = 1; i <= n; i++) inv[i] = fpow(i, md - 2);
    	for(register int i = 1; i <= n; i++) {
    		for(register int j = r; j <= s; j++) {
    			if(s - i * j < 0) break;
    			ans = add(ans, mul(mul(C[n - 1][i - 1], calc(n - i, s - i * j, j)), inv[i])); 
    		}
    	}
    	print(mul(ans, fpow(C[s - r + n - 1][n - 1], md - 2)), '
    ');
    	return 0;
    }
    
    // Rotate Flower Round.
    

    F:

    分别计算 $ -1 $ 和 $ -1 $ 的贡献,$ -1 $ 和数字的贡献,数字和数字的贡献

    第一个用 $ dp $ 求出,第二个用前缀和求出,第三个用树状数组求出

    $ sb $ 的我能用前缀和的地方写了树状数组

    #include <bits/stdc++.h>
    #define Fast_cin ios::sync_with_stdio(false), cin.tie();
    #define rep(i, a, b) for(register int i = a; i <= b; i++)
    #define per(i, a, b) for(register int i = a; i >= b; i--)
    #define DEBUG(x) cerr << "DEBUG" << x << " >>> " << endl;
    using namespace std;
    
    typedef unsigned long long ull;
    typedef long long ll;
    
    template <typename _T>
    inline void read(_T &f) {
        f = 0; _T fu = 1; char c = getchar();
        while(c < '0' || c > '9') { if(c == '-') fu = -1; c = getchar(); }
        while(c >= '0' && c <= '9') { f = (f << 3) + (f << 1) + (c & 15); c = getchar(); }
        f *= fu;
    }
    
    template <typename T>
    void print(T x) {
        if(x < 0) putchar('-'), x = -x;
        if(x < 10) putchar(x + 48);
        else print(x / 10), putchar(x % 10 + 48);
    }
    
    template <typename T>
    void print(T x, char t) {
        print(x); putchar(t);
    }
    
    const int N = 2e5 + 5, md = 998244353;
    
    inline int mul(int x, int y) { return (ll)x * y % md; }
    
    inline int add(int x, int y) {
    	x += y;
    	if(x >= md) x -= md;
    	return x;
    }
    
    inline int sqr(int x) { return mul(x, x); }
    
    inline int fpow(int x, int y) {
    	int ans = 1;
    	while(y) {
    		if(y & 1) ans = mul(ans, x);
    		y >>= 1; x = sqr(x);
    	}
    	return ans;
    }
    
    int a[N], s[N], f[N], fac[N];
    int n, inv2 = (md + 1) / 2, ans1;
    
    inline int lowbit(int x) { return x & -x; }
    
    void change(int x, int y) {
    	for(register int i = x; i <= n; i += lowbit(i))
    		f[i] += y;
    }
    
    int query(int x) {
    	int ans = 0;
    	for(register int i = x; i; i -= lowbit(i))
    		ans += f[i];
    	return ans;
    }
    
    int main() {
    	read(n); fac[0] = 1;
    	for(register int i = 1; i <= n; i++) read(a[i]), fac[i] = mul(fac[i - 1], i), s[i] = 1;
    	for(register int i = n; i >= 1; i--) {
    		if(a[i] == -1) continue;
    		ans1 = add(ans1, query(a[i]));
    		change(a[i], 1);
    	}
    	memset(f, 0, sizeof(f));
    	for(register int i = 1; i <= n; i++) {
    		if(a[i] != -1) s[a[i]] = 0;
    	}
    	for(register int i = 1; i <= n; i++) s[i] += s[i - 1];
    	ans1 = mul(ans1, fac[s[n]]);
    	for(register int i = 1; i <= s[n]; i++) f[i] = add(f[i - 1], mul(mul(fac[s[n]], fpow(i, md - 2)), mul(i - 1, mul(i, inv2))));
    	ans1 = add(ans1, f[s[n]]); memset(f, 0, sizeof(f));
    	for(register int i = 1; i <= n; i++) if(a[i] == -1) change(i, 1);
    	for(register int i = 1; i <= n; i++) {
    		if(a[i] == -1) continue;
    		int val = mul(s[a[i]], query(n) - query(i));
    		val = add(val, mul(s[n] - s[a[i]], query(i)));
    		val = mul(val, fac[s[n] - 1]);
    		ans1 = add(ans1, val);
    	}
    	print(mul(ans1, fpow(fac[s[n]], md - 2)), '
    ');
    	return 0;
    }
    

    G:

    看到背包问题就会想到卷积,因为背包的转移和卷积的形式相同

    对于最开始的 $ k $ 个数构造生成函数,计算 $ n / 2 $ 次幂,每一位的平方加起来就是答案啦

    #pragma GCC target("avx")
    #pragma GCC optimize(2)
    #pragma GCC optimize(3)
    #pragma GCC optimize("unroll-loops")
    #pragma GCC optimize("Ofast")
    #include <bits/stdc++.h>
    #define Fast_cin ios::sync_with_stdio(false), cin.tie();
    #define rep(i, a, b) for(register int i = a; i <= b; i++)
    #define per(i, a, b) for(register int i = a; i >= b; i--)
    #define DEBUG(x) cerr << "DEBUG" << x << " >>> " << endl;
    using namespace std;
    
    typedef unsigned long long ull;
    typedef long long ll;
    
    template <typename _T>
    inline void read(_T &f) {
        f = 0; _T fu = 1; char c = getchar();
        while(c < '0' || c > '9') { if(c == '-') fu = -1; c = getchar(); }
        while(c >= '0' && c <= '9') { f = (f << 3) + (f << 1) + (c & 15); c = getchar(); }
        f *= fu;
    }
    
    template <typename T>
    void print(T x) {
        if(x < 0) putchar('-'), x = -x;
        if(x < 10) putchar(x + 48);
        else print(x / 10), putchar(x % 10 + 48);
    }
    
    template <typename T>
    void print(T x, char t) {
        print(x); putchar(t);
    }
    
    const int P = 998244353;
    
    inline int add(int x, int y) {
        x += y;
        if(x >= P) x -= P;
        return x;
    }
    
    inline int sub(int x, int y) {
        x -= y;
        if(x < 0) x += P;
        return x;
    }
    
    inline int mul(int x, int y) {
        return (ll)x * y % P;
    }
    
    inline int fpow(int x, int y) {
        int ans = 1;
        while(y) {
            if(y & 1) ans = mul(ans, x);
            y >>= 1; x = mul(x, x);
        }
        return ans;
    }
    
    namespace ntt {
        int base = 1, root = -1, maxbase = -1;
        vector <int> roots = {0, 1}, rev = {0, 1};
        
        void init() {
            int tmp = P - 1; maxbase = 0;
            while(!(tmp & 1)) {
                tmp >>= 1;
                maxbase++;
            }
            root = 2;
            while(1) {
                if(fpow(root, 1 << maxbase) == 1 && fpow(root, 1 << (maxbase - 1)) != 1) break;
                root++;
            }
        }
        
        void ensure_base(int nbase) {
            if(maxbase == -1) init();
            if(nbase <= base) return;
            assert(nbase <= maxbase);
            rev.resize(1 << nbase);
            for(register int i = 1; i < (1 << nbase); i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (nbase - 1));
            roots.resize(1 << nbase);
            while(base < nbase) {
                int z = fpow(root, 1 << (maxbase - base - 1));
                for(register int i = (1 << (base - 1)); i < (1 << base); i++) {
                    roots[i << 1] = roots[i];
                    roots[i << 1 | 1] = mul(roots[i], z);
                }
                base++;
            } 
        }
        
        void dft(vector <int> &a) {
            int n = a.size(), zeros = __builtin_ctz(n);
            ensure_base(zeros);
            int shift = base - zeros;
            for(register int i = 0; i < n; i++) if(i < (rev[i] >> shift)) swap(a[i], a[rev[i] >> shift]);
            for(register int mid = 1; mid < n; mid <<= 1) {
                for(register int i = 0; i < n; i += (mid << 1)) {
                    for(register int j = 0; j < mid; j++) {
                        int x = a[i + j], y = mul(a[i + j + mid], roots[mid + j]);
                        a[i + j] = add(x, y); a[i + j + mid] = sub(x, y);
                    }
                }
            }
        }
        
        vector <int> pmul(vector <int> a, vector <int> b, bool is_sqr = false) {
            int need = a.size() + b.size() - 1, nbase = 0;
            while((1 << nbase) < need) nbase++;
            ensure_base(nbase); int size = 1 << nbase;
            a.resize(size); dft(a); if(!is_sqr) b.resize(size), dft(b); else b = a;
            int inv = fpow(size, P - 2);
            for(register int i = 0; i < size; i++) a[i] = mul(a[i], mul(b[i], inv));
            reverse(a.begin() + 1, a.end()); dft(a); a.resize(need); return a;
        }
        
        vector <int> psqr(vector <int> a) { return pmul(a, a, 1); }
        
        vector <int> inv(vector <int> a, int size) {
        	if(size == 1) return vector <int> { fpow(a[0], P - 2) };
        	vector <int> b = inv(a, size >> 1); a = pmul(a, psqr(b)); b.resize(size);
        	for(register int i = 0; i < size; i++) b[i] = sub(add(b[i], b[i]), a[i]);
        	return b;
        }
        
        vector <int> pinv(vector <int> a) {
        	int nbase = 0; while((1 << nbase) < a.size()) nbase++;
        	return inv(a, 1 << nbase);
        }
    }
    using ntt::pmul;
    using ntt::psqr;
    
    vector <int> wxw, ans;
    int n, k, sum;
    
    int main() {
    	read(n); read(k); wxw.resize(10); 
    	for(register int i = 1; i <= k; i++) {
    		int t; read(t); wxw[t] = 1;
    	}
    	n >>= 1; ans = wxw; n--;
    	while(n) {
    		if(n & 1) ans = pmul(ans, wxw);
    		n >>= 1; wxw = psqr(wxw);
    	}
    	for(register int i = 0; i < ans.size(); i++) sum = add(sum, mul(ans[i], ans[i]));
    	cout << sum << endl;
    	return 0;
    }
    
  • 相关阅读:
    几道关于this的经典练习题的理解与分析
    对this的理解与总结
    内存机制及内存泄漏相关总结
    css3-伪元素与伪类
    css3-目标伪类选择器:target的应用
    react学习资料
    angular2学习视频
    vue学习资料
    gulp 入门---使用gulp压缩图片
    gulp 入门---使用gulp压缩css
  • 原文地址:https://www.cnblogs.com/LJC00118/p/10193807.html
Copyright © 2020-2023  润新知