• Series详解---pandas


    从csv文件中读取数据生成DataFrame

    import pandas as pd
    #从csv文件中读取数据,生成DataFrame
    fandango = pd.read_csv('G:\python\库应用(4个)\3-可视化库matpltlib\fandango_scores.csv')
    #读取'FILM'列的[0~5)的值
    fandango['FILM'][0:5]
    #访问'RottenTomatoes'列的[0~5)的值
    fandango['RottenTomatoes'][0:5]

    查看类型

    fandango[['FILM','RottenTomatoes','RottenTomatoes_User']]
    type(fandango[['FILM','RottenTomatoes','RottenTomatoes_User']])       # pandas.core.frame.DataFrame
    type(fandango['RottenTomatoes'])                                      # pandas.core.series.Series
    #fandango['RottenTomatoes'].index                                     # RangeIndex(start=0, stop=146, step=1)

    1、Series的生成:从DataFrame中获取Series

    from pandas import Series
    # 从DataFrame中获取series:“FILM”列,得到Series
    type(fandango['FILM'])       # pandas.core.series.Series
    film_series = fandango['FILM']    

    2、构建Series,值为rt_scores,索引为film_names

    # series.values属性,获取所有值列表
    film_names = film_series.values         
    type(film_names)                        # type(film_names) 返回numpy.ndarray
    
    rt_series = fandango['RottenTomatoes']
    rt_scores = rt_series.values           
    type(rt_scores)                         # type(rt_scores) 返回numpy.ndarray
    
    # 构建Series,值为rt_scores,索引为film_names
    custom_series = Series(rt_scores, index=film_names)
    custom_series.index                    # Index([...],dtype='object', length=146)

    3、Series中元素的访问

    # 通过数字进行访问
    custom_series[[3,5,8]]
    # 通过索引名进行访问
    custom_series[['Minions (2015)', 'Leviathan (2014)']]

    4、series.index属性

    # series.index属性,获取所有索引
    type(custom_series.index)               # pandas.core.indexes.base.Index
    type(custom_series.index.tolist())      # list
    original_index = custom_series.index.tolist()

    5、sorted(iterable)是python内置函数,对list进行排序

    # sorted(iterable)是python内置函数,对list进行排序
    sorted_index = sorted(original_index)

    6、series.reindex(index_arr_like)重置series的索引

    #help(custom_series.reindex)
    # series.reindex(index_arr_like)重置series的索引
    sorted_by_index = custom_series.reindex(sorted_index)

    7、series按索引排序Series.sort_index()、按值排序Series.sort_values()

    # series按索引排序Series.sort_index()、按值排序Series.sort_values()
    custom_series.sort_index()
    custom_series.sort_values()

    8、numpy的add/sin/max运算

    #numpy的add/sin/max运算
    np.add(custom_series, custom_series)   # 等同于 custom_series + custom_series
    np.sin(custom_series)
    np.max(custom_series)

    9、Series条件判断

    custom_series > 98
    greater_than_98_series = custom_series[custom_series > 98]
    
    condition_one = custom_series > 60
    condition_two = custom_series < 66
    custom_series[condition_one & condition_two]

     10、两个Series的运算:每部电影,影评员与用户的平均评分

    # 每部电影,影评员与用户的平均评分
    rt_critics = Series(fandango['RottenTomatoes'].values, index=fandango['FILM'])
    rt_users = Series(fandango['RottenTomatoes_User'].values, index=fandango['FILM'].values)
    (rt_critics + rt_users)/2
    type(fandango['RottenTomatoes'])       # pandas.core.series.Series
    #fandango['RottenTomatoes'].index      # RangeIndex(start=0, stop=146, step=1)
    #rt_users.index                        # Index([...],dtype='object', length=146)

     11、Series.value_counts(): 统计每个值有在该列中有多少重复值。

    import pandas as pd
    import matplotlib.pyplot as plt
    reviews = pd.read_csv('fandango_scores.csv')
    cols = ['FILM', 'RT_user_norm', 'Metacritic_user_nom', 'IMDB_norm', 'Fandango_Ratingvalue']
    norm_reviews = reviews[cols]
    norm_reviews[:5]
    
    # Series.value_counts(): 每个值有在该列中有多少重复值。
    fandango_distribution = norm_reviews['Fandango_Ratingvalue'].value_counts()
    # Series.sort_index() 按索引排序,默认升序
    fandango_distribution = fandango_distribution.sort_index()
    
    imdb_distribution = norm_reviews['IMDB_norm'].value_counts()
    imdb_distribution = imdb_distribution.sort_index()
    
    print(fandango_distribution)
    print(imdb_distribution)
    2.7     2
    2.8     2
    2.9     5
    3.0     4
    3.1     3
    3.2     5
    3.3     4
    3.4     9
    3.5     9
    3.6     8
    3.7     9
    3.8     5
    3.9    12
    4.0     7
    4.1    16
    4.2    12
    4.3    11
    4.4     7
    4.5     9
    4.6     4
    4.8     3
    Name: Fandango_Ratingvalue, dtype: int64
    2.00     1
    2.10     1
    2.15     1
    2.20     1
    2.30     2
    2.45     2
    2.50     1
    2.55     1
    2.60     2
    2.70     4
    2.75     5
    2.80     2
    2.85     1
    2.90     1
    2.95     3
    3.00     2
    3.05     4
    3.10     1
    3.15     9
    3.20     6
    3.25     4
    3.30     9
    3.35     7
    3.40     1
    3.45     7
    3.50     4
    3.55     7
    3.60    10
    3.65     5
    3.70     8
    3.75     6
    3.80     3
    3.85     4
    3.90     9
    3.95     2
    4.00     1
    4.05     1
    4.10     4
    4.15     1
    4.20     2
    4.30     1
    Name: IMDB_norm, dtype: int64
    

    13、








  • 相关阅读:
    ios 10 更新所遇到的坑
    ios-coreText做微信点赞功能
    iOS 利用mask layer 使view中扣掉一块露出下边的view
    IOS-开发日记24
    ios 开发日记 23
    ios 开发日记 22-iOS 保持界面流畅的技巧
    ios 开发日记 21 -自动处理键盘事件的第三方库:IQKeyboardManager
    ios 开发日记 20
    ios 开发日记19-应用提交申请后加急审核
    ios开发日记-18上传appStore时,遇到错误,代码为ERROR ITMS-90049
  • 原文地址:https://www.cnblogs.com/LIAOBO/p/15380394.html
Copyright © 2020-2023  润新知