• poj3071Football(概率期望dp)


    Football

    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 5620   Accepted: 2868

    Description

    Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, …, 2n. In each round of the tournament, all teams still in the tournament are placed in a list in order of increasing index. Then, the first team in the list plays the second team, the third team plays the fourth team, etc. The winners of these matches advance to the next round, and the losers are eliminated. After n rounds, only one team remains undefeated; this team is declared the winner.

    Given a matrix P = [pij] such that pij is the probability that team i will beat team j in a match determine which team is most likely to win the tournament.

    Input

    The input test file will contain multiple test cases. Each test case will begin with a single line containing n (1 ≤ n ≤ 7). The next 2n lines each contain 2n values; here, the jth value on the ith line represents pij. The matrix P will satisfy the constraints that pij = 1.0 − pji for all i ≠ j, and pii = 0.0 for all i. The end-of-file is denoted by a single line containing the number −1. Note that each of the matrix entries in this problem is given as a floating-point value. To avoid precision problems, make sure that you use either the double data type instead of float.

    Output

    The output file should contain a single line for each test case indicating the number of the team most likely to win. To prevent floating-point precision issues, it is guaranteed that the difference in win probability for the top two teams will be at least 0.01.

    Sample Input

    2
    0.0 0.1 0.2 0.3
    0.9 0.0 0.4 0.5
    0.8 0.6 0.0 0.6
    0.7 0.5 0.4 0.0
    -1

    Sample Output

    2

    Hint

    In the test case above, teams 1 and 2 and teams 3 and 4 play against each other in the first round; the winners of each match then play to determine the winner of the tournament. The probability that team 2 wins the tournament in this case is:

    P(2 wins)  P(2 beats 1)P(3 beats 4)P(2 beats 3) + P(2 beats 1)P(4 beats 3)P(2 beats 4)
    p21p34p23 + p21p43p24
    = 0.9 · 0.6 · 0.4 + 0.9 · 0.4 · 0.5 = 0.396.

    The next most likely team to win is team 3, with a 0.372 probability of winning the tournament.

    Source

     
    /*
    因为2^n个球队 需要n大轮比赛才能决定冠军!
    因此,可以用dp[i][j],表示第i大轮比赛,j球队赢得概率!
    先遍历比赛轮数i,在遍历j,在遍历k,k表示j可以战胜的球队!
    当判断j和k相邻时(可以打比赛),
    dp[i][j] +=dp[i-1][j] * dp[i-1][k] * p[j][k];
    表示在上一轮中,j和k都存活了下来,并且在这一轮中j战胜了k。
    这样就解决了!
    那么 如何判断两个球队是否相邻呢!
    用到了^运算符,有一个性质 (2n) ^ (1) = 2n+1;  (2n+1) ^ (1) = 2n
    因此先给每一个数 >> (i-1),在进行^运算!就可以判断是否相邻了。
    这个说不太好说明,写一下就很明了了!
    */
    #include<stdio.h>
    #include<iostream>
    #include<algorithm>
    #include<string.h>
    using namespace std;
    
    double dp[8][200];//dp[i][j]表示在第i场比赛中j胜出的概率
    double p[200][200];
    int main()
    {
        int n;
        while(scanf("%d",&n)!=EOF)
        {
            if(n==-1)break;
            memset(dp,0,sizeof(dp));
            for(int i=0;i<(1<<n);i++)
              for(int j=0;j<(1<<n);j++)
                scanf("%lf",&p[i][j]);
                //cin>>p[i][j];
            for(int i=0;i<(1<<n);i++)dp[0][i]=1;
            for(int i=1;i<=n;i++)//2^n个人要进行n场比赛
            {
                for(int j=0;j<(1<<n);j++)
                {
                    int t=j/(1<<(i-1));
                    t^=1;
                    dp[i][j]=0;
                    for(int k=t*(1<<(i-1));k<t*(1<<(i-1))+(1<<(i-1));k++)
                      dp[i][j]+=dp[i-1][j]*dp[i-1][k]*p[j][k];
                }
            }
            int ans;
            double temp=0;
            for(int i=0;i<(1<<n);i++)
            {
                if(dp[n][i]>temp)
                {
                    ans=i;
                    temp=dp[n][i];
                }
            }
            printf("%d
    ",ans+1);
        }
        return 0;
    }
    折花枝,恨花枝,准拟花开人共卮,开时人去时。 怕相思,已相思,轮到相思没处辞,眉间露一丝。
  • 相关阅读:
    从一个iOS毛头小子到现在的高级工程师, 我总结了一些经验,先跟大家分享一下一些好的资料
    iOS面试题---Objective_C语言特性:分类、扩展、代理、通知、KVO、KVC、属性
    200道iOS面试题面试题整理,底层、技术亮点公司需要的这里都有
    [iOS 开发] iOS 开发从菜鸟到高手?听听他们怎么说
    2020年面向iOS开发人员的知识点总结(更新中)
    OC项目转Swift指南
    来自老程序员的10条中肯建议
    面对职业瓶颈,iOS 开发人员应该如何突破?
    憨憨程序猿,不要让你的技术被简历埋没了
    总结:实现线程同步的八种方式
  • 原文地址:https://www.cnblogs.com/L-Memory/p/7219816.html
Copyright © 2020-2023  润新知