网络编程之多线程——死锁现象与递归锁
一、死锁现象
所谓死锁:是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种相互等待的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程,如下就是死锁:
from threading import Thread,Lock
import time
mutexA=Lock()
mutexB=Lock()
class MyThread(Thread):
def run(self):
self.func1()
self.func2()
def func1(self):
mutexA.acquire()
print(' 33[41m%s 拿到A锁 33[0m' %self.name)
mutexB.acquire()
print(' 33[42m%s 拿到B锁 33[0m' %self.name)
mutexB.release()
mutexA.release()
def func2(self):
mutexB.acquire()
print(' 33[43m%s 拿到B锁 33[0m' %self.name)
time.sleep(2)
mutexA.acquire()
print(' 33[44m%s 拿到A锁 33[0m' %self.name)
mutexA.release()
mutexB.release()
if __name__ == '__main__':
for i in range(10):
t=MyThread()
t.start()
执行效果
Thread-1 拿到A锁
Thread-1 拿到B锁
Thread-1 拿到B锁
Thread-2 拿到A锁 #出现死锁,整个程序阻塞住
二、递归锁
解决方法,递归锁,在Python中为了支持在同一线程中多次请求同一资源,python提供了可重入锁RLock。
这个RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次acquire。直到一个线程所有的acquire都被release,其他的线程才能获得资源。上面的例子如果使用RLock代替Lock,则不会发生死锁,二者的区别是:递归锁可以连续acquire多次,而互斥锁只能acquire一次。
from threading import Thread,RLock
import time
mutexA=mutexB=RLock() #一个线程拿到锁,counter加1,该线程内又碰到加锁的情况,则counter继续加1,这期间所有其他线程都只能等待,等待该线程释放所有锁,即counter递减到0为止
class MyThread(Thread):
def run(self):
self.func1()
self.func2()
def func1(self):
mutexA.acquire()
print(' 33[41m%s 拿到A锁 33[0m' %self.name)
mutexB.acquire()
print(' 33[42m%s 拿到B锁 33[0m' %self.name)
mutexB.release()
mutexA.release()
def func2(self):
mutexB.acquire()
print(' 33[43m%s 拿到B锁 33[0m' %self.name)
time.sleep(2)
mutexA.acquire()
print(' 33[44m%s 拿到A锁 33[0m' %self.name)
mutexA.release()
mutexB.release()
if __name__ == '__main__':
for i in range(10):
t=MyThread()
t.start()