Description
给定一个非负整数序列{a},初始长度为N。
有M个操作,有以下两种操作类型:
1、Ax:添加操作,表示在序列末尾添加一个数x,序列的长度N+1。
2、Q l r x:询问操作,你需要找到一个位置p,满足l<=p<=r,使得:
a[p] xor a[p+1] xor ... xor a[N] xor x 最大,输出最大是多少。
Input
第一行包含两个整数 N ,M,含义如问题描述所示。
第二行包含 N个非负整数,表示初始的序列 A 。
接下来 M行,每行描述一个操作,格式如题面所述。
Output
假设询问操作有 T个,则输出应该有 T行,每行一个整数表示询问的答案。
Sample Input
5 5
2 6 4 3 6
A 1
Q 3 5 4
A 4
Q 5 7 0
Q 3 6 6
Sample Output
4
5
6
Hints
对于测试点 1-2,N,M<=5 。
对于测试点 3-7,N,M<=80000 。
对于测试点 8-10,N,M<=300000 。
其中测试点 1, 3, 5, 7, 9保证没有修改操作。
0<=a[i]<=10^7。
Solution
又是一道可持久化 Trie 的套路题,不过一开始被建树难住了...
分析题目:
- 异或有基本性质即 : ({({x}igoplus{y})}igoplus{y}=x) .
- 此题要求我们求 ({({a_{p}}igoplus{a_{i}})}igoplus{a_{n}})的值,即({sum_{p-1}}igoplus{sum_{n}}),其中(sum)代表从根节点出发的异或前缀和.
那么我们思路也就很明了了。
我们在Trie中插入每一个前缀和,然后在查询的时候直接查询((l-2,r-1))即可。
代码
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=300008;
int T[maxn*2],ch[2*maxn*32][2];
int num[2*maxn*32],n,m;
ll a[maxn*2],tot;
int insert(int pre,ll x,int v)
{
int rt=++tot;
ll c=((x>>v)&1);
ch[rt][0]=ch[pre][0];
ch[rt][1]=ch[pre][1];
num[rt]=num[pre]+1;
if(v>=0)
ch[rt][c]=insert(ch[pre][c],x,v-1);
return rt;
}
ll ans;
void query(int l,int r,ll x,int v)
{
ll c=((x>>v)&1);
if(num[ch[r][c^1]]-num[ch[l][c^1]]>0)
{
ans+=(1<<v);
if(v>=0)
query(ch[l][c^1],ch[r][c^1],x,v-1);
}
else
if(v>=0)
query(ch[l][c],ch[r][c],x,v-1);
}
ll sum[maxn*2];
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
for(int i=1;i<=n;i++)
sum[i]=sum[i-1]^a[i];
for(int i=1;i<=n;i++)
T[i]=insert(T[i-1],sum[i],30);
for(int i=1;i<=m;i++)
{
ll x,y,z;
char ch[10]; scanf("%s ",ch);
if(ch[0]=='A')
{
scanf("%lld",&x);
n++;
sum[n]=sum[n-1]^x;
T[n]=insert(T[n-1],sum[n],30);
}
else
{
scanf("%lld%lld%lld",&x,&y,&z);
z=z^sum[n];
ans=0;
if(y==1){cout<<z<<endl;continue;}
query(T[x-2],T[y-1],z,30);
cout<<ans<<endl;
}
}
}