• 【HDU 5184】 Brackets (卡特兰数)


    Brackets



    Problem Description
    We give the following inductive definition of a “regular brackets” sequence:
    ● the empty sequence is a regular brackets sequence,
    ● if s is a regular brackets sequence, then (s) are regular brackets sequences, and
    ● if a and b are regular brackets sequences, then ab is a regular brackets sequence.
    ● no other sequence is a regular brackets sequence

    For instance, all of the following character sequences are regular brackets sequences:
    (), (()), ()(), ()(())
    while the following character sequences are not:
    (, ), )(, ((), ((()

    Now we want to construct a regular brackets sequence of length n, how many regular brackets sequences we can get when the front several brackets are given already.
    Input
    Multi test cases (about 2000), every case occupies two lines.
    The first line contains an integer n.
    Then second line contains a string str which indicates the front several brackets.

    Please process to the end of file.

    [Technical Specification]
    1n1000000
    str contains only '(' and ')' and length of str is larger than 0 and no more than n.
    Output
    For each case,output answer % 1000000007 in a single line.
    Sample Input
    4
    ()
    4
    (
    6
    ()
     
     
    【题意】
      括号匹配(<=10^6),给出已将匹配好的前若干个的括号,让你把剩下的匹配完,问方案数%10^9+7,多组数据<=1000
     
    【分析】
      跟上一题类似。先判断他给的括号是否匹配。然后假设左括号比右括号多了l个,就是要求任意前缀和>=l的方案数。也用1与-1互换的方法推
     
      
      上一个厉害的证明:
      
     
      我的理解在上一篇博写了~
     
    代码如下:
     1 #include<cstdio>
     2 #include<cstdlib>
     3 #include<cstring>
     4 #include<iostream>
     5 #include<algorithm>
     6 #include<queue>
     7 #include<cmath>
     8 using namespace std;
     9 #define Maxn 1000010
    10 #define Mod 1000000007
    11 #define LL long long
    12 
    13 char s[Maxn];
    14 int p[Maxn];
    15 
    16 void init()
    17 {
    18     p[0]=1;
    19     for(int i=1;i<=Maxn-10;i++)
    20     {
    21         LL x=(LL)p[i-1],y=(LL)i,z;
    22         z=(x*y)%Mod;
    23         p[i]=(int)z;
    24     }
    25 }
    26 
    27 LL qpow(int x,int b)
    28 {
    29     if(x==0) return 1;
    30     LL xx=x,ans=1;
    31     while(b)
    32     {
    33         if(b&1) ans=(ans*xx)%Mod;
    34         xx=(xx*xx)%Mod;
    35         b>>=1;
    36     }
    37     return ans;
    38 }
    39 
    40 int get_c(int n,int m)
    41 {
    42     LL ans=p[m];
    43     ans=(ans*qpow(p[n],Mod-2))%Mod;
    44     ans=(ans*qpow(p[m-n],Mod-2))%Mod;
    45     return (int)ans;
    46 }
    47 
    48 int main()
    49 {
    50     init();
    51     int n;
    52     while(scanf("%d",&n)!=EOF)
    53     {
    54         int m,sl=0;
    55         scanf("%s",s+1);
    56         int l=strlen(s+1),now=0;
    57         bool ok=1;
    58         for(int i=1;i<=l;i++)
    59         {
    60             if(s[i]=='(') now++,sl++;
    61             else now--;
    62             if(now<0) ok=0;
    63         }
    64         if(n%2!=0||l>n||!ok||sl*2>n||(l-sl)*2>n) {printf("0
    ");continue;}
    65         m=n/2-sl;
    66         if(sl==n/2||l==n) {printf("1
    ");continue;}
    67         printf("%d
    ",(get_c(m,2*m+now)+Mod-get_c(m-1,2*m+now))%Mod);
    68     }
    69     return 0;
    70 }
    [HDU 5184]

    2016-09-20 19:53:38

  • 相关阅读:
    【LeetCode】205. Isomorphic Strings
    Syscall param open(filename) points to unaddressable byte(s)
    五种主要多核并行编程方法分析与比较
    计算机时间复杂度和空间复杂度
    CUDA学习笔记(二)【转】
    CUDA学习笔记(一)【转】
    CUDA Thread Indexing
    Intel MKL函数,如何得到相同的计算结果?【转】
    CUDA编程
    GPU(CUDA)学习日记(十一)------ 深入理解CUDA线程层次以及关于设置线程数的思考
  • 原文地址:https://www.cnblogs.com/Konjakmoyu/p/5890149.html
Copyright © 2020-2023  润新知