• 【UVALive


    Description

    A prominent microprocessor company has enlisted your help to lay out some interchangeable components
    (widgets) on some of their computer chips. Each chip’s design is an N × N square of slots. One
    slot can hold a single component, and you are to try to fit in as many widgets as possible.
    Modern processor designs are complex, of course. You unfortunately have several restrictions:
    • Some of the slots are disabled.
    • Some of the slots are already occupied by other components and cannot be used for widgets.
    • There are sibling memory buses connected to the horizontal and vertical edges of the chip and
    their bandwidth loads need to match. As such, there must be exactly as many components in
    the first row as in the first column, exactly as many in the second row as in the second column,
    and so on. Component counts include both the components already specified on the chip and the
    added widgets.
    • Similarly, the power supply is connected at the end of each row and column. To avoid hot spots,
    any given row or column must have no more than A/B of the total components on the chip for
    a given A and B.
    A specification for a chip is N lines of N characters, where ‘.’ indicates an open slot, ‘/’ indicates
    a disabled slot, and ‘C’ indicates a slot already occupied by a component. For example:
    CC/..
    ././/
    ..C.C
    /.C..
    /./C/
    If no more than 3/10 of the components may be in any one row or column, the maximum number of
    widgets that can be added to this 5 × 5 chip is 7. A possible arrangement is below, where ‘W’ indicates
    a widget added in an open slot.
    CC/W.
    W/W//
    W.C.C
    /.CWW
    /W/C/erb


    Input
    The input consists of several test cases. Each case starts with a line containing three integers: The size
    of the chip N (1 ≤ N ≤ 40), and A and B (1 ≤ B ≤ 1000, 0 ≤ A ≤ B) as described above. Each of the
    following N lines contains N characters describing the slots, one of ‘.’, ‘/’ or ‘C’, as described above.
    The last test case is followed by a line containing three zeros.

    Output
    For each test case, display a single line beginning with the case number. If there is a solution, display
    the maximum number of widgets that can be added to the chip. Display ‘impossible’ if there is no
    solution.
    Follow the format of the sample output.


    Sample Input
    2 1 1
    /.
    //
    2 50 100
    /.
    C/
    2 100 100
    ./
    C.
    5 3 10
    CC/..
    ././/
    ..C.C
    /.C..
    /./C/
    5 2 10
    CC/..
    ././/
    ..C.C
    /.C..
    /./C/
    0 0 0

    Sample Output
    Case 1: 0
    Case 2: 1
    Case 3: impossible
    Case 4: 7
    Case 5: impossible

    【题意】

      有一个n*n的矩阵(n<=40),每个位置有三种情况,/表示不能用,C表示这个位置有一个芯片,'.'表示这个位置可以放芯片,要求第i行的芯片总数等于第i列的芯片总数,每行或的每列的芯片总数不能超过总芯片数的A/B。

    【分析】

      没有行列约束的时候直接行列建边。对于A/B的约束其实可以枚举行列的最大值然后加限制跑最大流(因为行很少)。不过有行等于列的约束,于是再建一条列到行的反向边,上限定为你枚举的约束,做循环流。因为循环流要加边而且判满流,所以要加一个费用才能计算,于是就是上下界循环费用流了。

      1 #include<cstdio>
      2 #include<cstdlib>
      3 #include<cstring>
      4 #include<iostream>
      5 #include<algorithm>
      6 #include<queue>
      7 using namespace std;
      8 #define Maxn 10100
      9 #define Maxm 1001000
     10 #define INF 0xfffffff
     11 
     12 int map[50][50];
     13 int first[Maxn],dis[Maxn],pre[Maxn],flow[Maxn];
     14 char s[50];
     15 bool inq[Maxn];
     16 
     17 int st,ed,sum,h;
     18 int n,A,B;
     19 
     20 struct node
     21 {
     22     int x,y,f,c,o,next;
     23 }t[Maxm];int len;
     24 
     25 int mymax(int x,int y) {return x>y?x:y;}
     26 int mymin(int x,int y) {return x<y?x:y;}
     27 
     28 void ins(int x,int y,int f,int c)
     29 {
     30     if(f==0) return;
     31     if(x==st) sum+=f;
     32     t[++len].x=x;t[len].y=y;t[len].f=f;t[len].c=c;
     33     t[len].next=first[x];first[x]=len;t[len].o=len+1;
     34     t[++len].x=y;t[len].y=x;t[len].f=0;t[len].c=-c;
     35     t[len].next=first[y];first[y]=len;t[len].o=len-1;
     36 }
     37 
     38 
     39 void make_edge(int x,int y,int k1,int k2,int c)
     40 {
     41     ins(st,y,k2,0);
     42     ins(x,ed,k2,c);
     43     ins(y,x,k2-k1,-c);
     44 }
     45 
     46 queue<int > q;
     47 bool bfs(int f1,int f2)
     48 {
     49     while(!q.empty()) q.pop();
     50     memset(dis,-63,sizeof(dis));
     51     memset(inq,0,sizeof(inq));
     52     memset(pre,-1,sizeof(pre));
     53     inq[f1]=1;q.push(f1);flow[f1]=INF;pre[f1]=0;dis[st]=0;
     54     while(!q.empty())
     55     {
     56         int x=q.front();q.pop();
     57         for(int i=first[x];i;i=t[i].next) if(t[i].f>0)
     58         {
     59             int y=t[i].y;
     60             if(dis[y]<dis[x]+t[i].c)
     61             {
     62                 dis[y]=dis[x]+t[i].c;
     63                 if(!inq[y]) {q.push(y);inq[y]=1;}
     64                 pre[y]=i;
     65                 flow[y]=mymin(flow[x],t[i].f);
     66             }
     67         }
     68         inq[x]=0;
     69     }
     70     if(pre[f2]==-1) return 0;
     71     return flow[f2];
     72 }
     73 
     74 int ffind(int x,int y)
     75 {
     76     int a,sc=0,now;h=0;
     77     while(a=bfs(st,ed))
     78     {
     79         now=y;sc+=a*dis[y];
     80         h+=a;
     81         while(now!=x)
     82         {
     83             t[pre[now]].f-=a;
     84             t[t[pre[now]].o].f+=a;
     85             now=t[pre[now]].x;
     86         }
     87     }
     88     return sc;
     89 }
     90 
     91 int get_ans(int x)
     92 {
     93     st=2*n+1,ed=st+1;
     94     len=0;sum=0;
     95     memset(first,0,sizeof(first));
     96     for(int i=1;i<=n;i++)
     97       for(int j=1;j<=n;j++)
     98       {
     99           if(map[i][j]==2) make_edge(i,j+n,1,1,1);
    100           else if(map[i][j]==1) ins(i,j+n,1,1);
    101       }
    102      for(int i=1;i<=n;i++) make_edge(i+n,i,0,x,0);
    103     int a=ffind(st,ed);
    104     if(h!=sum) return -1;
    105     if(x*B<=a*A) return a;
    106     return -1;
    107 }
    108 
    109 int main()
    110 {
    111     int kase=0;
    112     while(1)
    113     {
    114         scanf("%d%d%d",&n,&A,&B);
    115         if(n==0&&A==0&&B==0) break;
    116         bool ok=1;
    117         int sc=0;
    118         for(int i=1;i<=n;i++)
    119         {
    120             scanf("%s",s);
    121             for(int j=0;j<n;j++)
    122             {
    123                 if(s[j]=='/') map[i][j+1]=0;
    124                 else if(s[j]=='.') map[i][j+1]=1;
    125                 else map[i][j+1]=2,sc++;
    126             }
    127         }
    128         for(int i=1;i<=n;i++)
    129         {
    130             int s1=0,s2=0;
    131             for(int j=1;j<=n;j++)
    132             {
    133                 if(map[i][j]==2) s1++;
    134                 if(map[j][i]==2) s2++;
    135             }
    136             if(s1!=s2||s1*B>sc*A||s2*B>sc*A) {ok=0;break;}
    137         }
    138         printf("Case %d: ",++kase);
    139         int maxx=-1;
    140         if(ok) maxx=sc;
    141         for(int i=1;i<=n;i++)
    142         {
    143             maxx=mymax(maxx,get_ans(i));
    144             
    145         }
    146         if(maxx!=-1) maxx-=sc;
    147         if(maxx==-1) printf("impossible
    ");
    148         else printf("%d
    ",maxx);
    149     }
    150     return 0;
    151 }
    [LA5131]

    2016-06-04 13:27:29

  • 相关阅读:
    AWS Dynamodb aggregation的处理问题
    Java线程池的实现与应用
    机器学习笔记之基本框架:
    Azure machine learning series 1 Introduction
    AWS的安全机制
    模板
    矩阵快速幂总结
    中位数总结
    KMP算法
    动态规划----背包总结
  • 原文地址:https://www.cnblogs.com/Konjakmoyu/p/5558664.html
Copyright © 2020-2023  润新知