• atcoder abc 244


    atcoder abc 244

    D - swap hats

    给定两个 R,G,B 的排列

    进行刚好 \(10^{18}\) 次操作,每一次选择两个交换

    问最后能否相同

    刚好 \(10^{18}\)

    算出交换最少次数,判断是否为偶数。

    E - King Bombee

    \(n\)\(m\) 边的简单无向图,给定 \(K,S,T\)\(X\)

    求满足以下条件的路径数 \(\;mod\;998244353\)

    • 路径 \(A\) 以长度为 \(K\) ,以 \(S\) 开使,\(T\) 结束,点 \(X\) 经过偶数次

    简单的计数,设 \(f_{i,j,0/1}\) 为第 \(i\) 步到 \(j\) 经过 \(X\) 次数 \(\mod 2\)\(0/1\) 的方案

    \(n\le 2000\)

    #include <bits/stdc++.h>
    using namespace std;
    typedef unsigned long long uLL;
    typedef long double LD;
    typedef long long LL;
    typedef double db;
    const int N = 2005;
    const LL P = 998244353;
    int n, m, K, St, Ed, X, lst[N], Ecnt;
    struct Edge { int to, nxt; } e[N << 1];
    LL f[N][N][2];
    inline void Ae(int fr, int go) {
        e[++Ecnt] = (Edge){ go, lst[fr] }, lst[fr] = Ecnt;
    }
    int main() {
        scanf("%d%d%d%d%d%d", &n, &m, &K, &St, &Ed, &X);
        for (int i = 1, u, v; i <= m; i++) {
            scanf("%d%d", &u, &v);
            Ae(u, v), Ae(v, u);
        }
        f[0][St][0] = 1;
        for (int i = 1; i <= K; i++)
            for (int j = 1; j <= n; j++) {
                for (int k = lst[j], v, t; k; k = e[k].nxt) {
                    v = e[k].to;
                    t = j == X;
                    (f[i][j][0] += f[i - 1][v][0 ^ t]) %= P;
                    (f[i][j][1] += f[i - 1][v][1 ^ t]) %= P;
                }
            }
        printf("%lld", f[K][Ed][0]);
    }
    

    F - Shortest Good Path

    \(n\)\(m\) 边的简单无向图,

    长度为 \(n\) 的序列 \(s_i\)\(s_{i}\in\set{0,1}\) 能表示一条路径 \(A\) 当点 \(i\) 出现次数 \(\mod 2=s_i\)

    对所有 \(2^n\) 个序列,所表示的最短路径长度和

    \(n\le 17\)


    简单的 bfs ,设 \(f_{s,i}\) 为序列 \(s\) 最后 \(i\) 的最短路

    #include <bits/stdc++.h>
    using namespace std;
    typedef unsigned long long uLL;
    typedef long double LD;
    typedef long long LL;
    typedef double db;
    const int N = 20;
    int n, m, mx, a[N][N], l[N];
    int f[1 << 18][N], res;
    LL ans;
    queue< pair<int, int> > Q;
    int main() {
        scanf("%d%d", &n, &m);
        for (int i = 1, u, v; i <= m; i++) {
            scanf("%d%d", &u, &v);
            u--, v--;
            a[u][++l[u]] = v;
            a[v][++l[v]] = u;
        }
        mx = (1 << n) - 1;
        for (int i = 0; i <= mx; i++)
            for (int j = 0; j < n; j++) f[i][j] = 1e9;
        for (int i = 0; i < n; i++) f[1 << i][i] = 1, Q.push(make_pair(i, 1 << i));
        while (!Q.empty()) {
            int u = Q.front().first, s = Q.front().second;
            Q.pop();
            for (int i = 1, v, ts; i <= l[u]; i++) {
                v = a[u][i], ts = s ^ (1 << v);
                if (f[s][u] + 1 >= f[ts][v]) continue;
                f[ts][v] = f[s][u] + 1, Q.push(make_pair(v, ts));
            }
        }
        for (int i = 1; i <= mx; i++) {
            res = 1e9;
            for (int j = 0; j < n; j++) res = min(res, f[i][j]);
            if (res < 1e9) ans += res;
        }
        printf("%lld", ans);
    }
    

    G - Construct Good Path

    \(n\)\(m\) 边的简单无向图,和一个序列 \(s\)\(s_i\in\set{0,1}\)

    构造一条路径,使得点 \(i\) 的出现次数 \(\mod 2\)\(s_i\)

    输出任意一个长度小于等于 \(4n\) 的路径,可以证明存在

    \(n,m\le 2\times 10^5\)


    构造题

    无向图可以转换为树,结果不变

    定义序列,\(A\) 如下:

    • \(A_u=(u)+\sum_{(u,v)\in E} A_v+(u)+B_v\)
    • \(+\) 表示序列的连接。
    • \(v\) 出现次数 \(mod\;2\ne s_i\)\(B_v=(v,u)\) ,否则 \(B_v=()\)

    \(A\) 满足:

    • \(A_u\)\(u\) 开始,以 \(u\) 结束
    • 对于 \(u\) 的所有儿子 \(v\)\(v\) 出现次数满足条件
    • 长度最多为 \(4n-3\) (菊花图)

    从任意 \(root\) 开始,最后判断 \(root\) 出现次数

    若不满足条件,答案为 \(A_{root}+(v,root,v)\)\(v\) 为任意儿子。否则为 \(A_{root}\)

    复杂度 \(O(n)\)

    #include <bits/stdc++.h>
    using namespace std;
    typedef unsigned long long uLL;
    typedef long double LD;
    typedef long long LL;
    typedef double db;
    const int N = 2e5 + 5;
    int n, m, lst[N], Ecnt, vis[N], a[N];
    int ans[N << 2], len;
    char str[N];
    struct Ed { int to, nxt; } e[N << 1];
    inline void Ae(int fr, int go) {
        e[++Ecnt] = (Ed){ go, lst[fr] }, lst[fr] = Ecnt;
    }
    void dfs(int u) {
        vis[u] = 1, ans[++len] = u, a[u] ^= 1;
        for (int i = lst[u], v; i; i = e[i].nxt)
            if (!vis[v = e[i].to]) {
                dfs(v), ans[++len] = u, a[u] ^= 1;
                if (a[v]) {
                    ans[++len] = v, a[v] ^= 1;
                    ans[++len] = u, a[u] ^= 1;
                }
            }
    }
    int main() {
        scanf("%d%d", &n, &m);
        for (int i = 1, u, v; i <= m; i++) {
            scanf("%d%d", &u, &v);
            Ae(u, v), Ae(v, u);
        }
        scanf("%s", str + 1);
        for (int i = 1; i <= n; i++) a[i] = str[i] - 48;
        dfs(1);
        if (a[1]) {
            ans[++len] = e[lst[1]].to;
            ans[++len] = a[1];
            ans[++len] = e[lst[1]].to;
        }
        printf("%d\n", len);
        for (int i = 1; i <= len; i++) printf("%d ", ans[i]);
    }
    

    Ex Linear Maximization

    \(Q\) 次操作,每次给 \(x,y,a,b\) ,要求将 \((x,y)\) 插入集合 \(S\) ,再查询 \(\max_{(x,y)\in S} ax+by\)

    \(Q\le 2\times 10^5\)

    [SDOI2014]向量集 弱化版。

    其实是求点积最大,\(ans=ax+by\) ,变形得 \(y=-\dfrac{a}{b}x+\dfrac{ans}{b}\)

    根据 \(b\) 的正负,求最大或最小截距,答案在上凸或下凸壳上

    线段树维护凸包,每次查询对应凸包三分。

    #include <bits/stdc++.h>
    #define PB push_back
    using namespace std;
    typedef unsigned long long uLL;
    typedef long double LD;
    typedef long long LL;
    typedef double db;
    const int N = 500005;
    int Ti, cnt;
    LL ans;
    struct vec {
        LL x, y;
        vec(LL _x = 0, LL _y = 0) : x(_x), y(_y) { }
        bool operator < (vec a) const { return x ^ a.x ? x < a.x : y < a.y; }
        vec operator - (vec a) { return vec(x - a.x, y - a.y); }
        LL operator * (vec a) { return x * a.y - y * a.x; }
        LL operator ^ (vec a) { return x * a.x + y * a.y; }
    } a[N], b[N], c[N], s[N], now;
    vector<vec> t[N << 2][2];
    #define ls (rt << 1)
    #define rs (rt << 1 | 1)
    inline void bui(int rt) {
        int n, m, top, len;
        for (int o = 0; o <= 1; o++) {
            n = m = len = top = 0;
            for (vec x : t[ls][o]) a[++n] = x;
            for (vec x : t[rs][o]) b[++m] = x;
            for (int i = 1, j = 1; i <= n || j <= m; ) {
                if (j > m || (i <= n && a[i] < b[j])) c[++len] = a[i++];
                else c[++len] = b[j++];
            }
            for (int i = 1; i <= len; s[++top] = c[i++])
                while (top >= 2 && ((c[i] - s[top]) * (s[top] - s[top - 1]) <= 0) ^ o) top--;
            for (int i = 1; i <= top; i++) t[rt][o].PB(s[i]);
        }
    }
    void ins(int x, int l, int r, int rt) {
        if (l == r) return t[rt][0].PB(now), t[rt][1].PB(now);
        register int mid = l + r >> 1;
        if (x <= mid) ins(x, l, mid, ls);
        else ins(x, mid + 1, r, rs);
        if (x == r) bui(rt);
    }
    inline LL calc(int rt, vec a) {
        int o = a.y <= 0;
        int l = 1, r = t[rt][o].size();
        LL res = -(1ll << 62), m1, m2;
        while (r - l + 1 >= 4) {
            m1 = (l + l + r) / 3, m2 = (l + r + r) / 3;
            (t[rt][o][m1 - 1] ^ now) > (t[rt][o][m2 - 1] ^ now) ? r = m2 : l = m1;
        }
        for (int i = l; i <= r; i++) res = max(res, t[rt][o][i - 1] ^ a);
        return res;
    }
    void ask(int ql, int qr, int l, int r, int rt) {
        if (ql > r || l > qr) return;
        if (ql <= l && r <= qr) { ans = max(ans, calc(rt, now)); return; }
        register int mid = l + r >> 1;
        ask(ql, qr, l, mid, ls), ask(ql, qr, mid + 1, r, rs);
    }
    #undef ls
    #undef rs
    int main() {
        scanf("%d", &Ti);
        int n = Ti;
        for (LL i = 1, x, y, l, r; i <= Ti; i++) {
            scanf("%lld%lld", &x, &y);
            now.x = x, now.y = y;
            ins(++cnt, 1, n, 1);
            scanf("%lld%lld", &x, &y);
            now.x = x, now.y = y;
            ans = -(1ll << 62);
            ask(1, i, 1, n, 1);
            printf("%lld\n", ans);
        }
    }
    
  • 相关阅读:
    ES6深入浅出-5 新版对象-1.如何创建对象
    ES6深入浅出-4 迭代器与生成器-5.科班 V.S. 培训
    ES6深入浅出-4 迭代器与生成器-4.总结
    ES6深入浅出-4 迭代器与生成器-3.生成器 & for...of
    ES6深入浅出-4 迭代器与生成器-2.Symbol 和迭代器
    Spring cloud微服务安全实战-3-2 第一个API及注入攻击防护
    Spring cloud微服务安全实战-3-1 API安全 常见的安全机制
    Spring Cloud微服务安全实战- 2-1 环境安装
    Spring cloud微服务安全实战_汇总
    ES6深入浅出-4 迭代器与生成器-1.字面量增强
  • 原文地址:https://www.cnblogs.com/KonjakLAF/p/16320216.html
Copyright © 2020-2023  润新知