• upc 7831 Sticks


    Sticks

    时间限制: 1 Sec  内存限制: 128 MB
    提交: 26  解决: 4
    [提交] [状态] [讨论版] [命题人:admin]

    题目描述

    George took sticks of the same length and cut them randomly until all parts became at most 50 units long. Now he wants to return sticks to the original state, but he forgot how many sticks he had originally and how long they were originally. Please help him and design a program which computes the smallest possible original length of those sticks. All lengths expressed in units are integers greater than zero.

    输入

    The input contains blocks of 2 lines. The first line contains the number of sticks parts after cutting, there are at most 64 sticks. The second line contains the lengths of those parts separated by the space. The last line of the file contains zero.

    输出

    The output should contains the smallest possible length of original sticks, one per line.

    样例输入

    9
    5 2 1 5 2 1 5 2 1
    4
    1 2 3 4
    0
    

    样例输出

    6 5

    题意

    有n个木棍,用这些木棍拼成m个一模一样的木棍,使得拼成的长度尽量小。

    分析

    DFS搜索没什么好说的,经典剪枝倒是不少。

    1、枚举m,那么n个木棍的总长度一定整除m。

    2、从大到小排序,每次从最大的开始选,dfs过程可以减少。

    3、两根一模一样的木棍不需要重复判断。

    4、如果一根木棍无法与其它木棍拼成所需长度,那么这个方案一定不可行,因为最终所有木棍都要被用上。

    ///  author:Kissheart  ///
    #include<stdio.h>
    #include<algorithm>
    #include<iostream>
    #include<string.h>
    #include<vector>
    #include<stdlib.h>
    #include<math.h>
    #include<queue>
    #include<deque>
    #include<ctype.h>
    #include<map>
    #include<set>
    #include<stack>
    #include<string>
    #define INF 0x3f3f3f3f
    #define FAST_IO ios::sync_with_stdio(false)
    const double PI = acos(-1.0);
    const double eps = 1e-6;
    const int MAX=1e5+10;
    const int mod=1e9+7;
    typedef long long ll;
    using namespace std;
    #define gcd(a,b) __gcd(a,b)
    inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
    inline ll qpow(ll a,ll b){ll r=1,t=a; while(b){if(b&1)r=(r*t)%mod;b>>=1;t=(t*t)%mod;}return r;}
    inline ll inv1(ll b){return qpow(b,mod-2);}
    inline ll exgcd(ll a,ll b,ll &x,ll &y){if(!b){x=1;y=0;return a;}ll r=exgcd(b,a%b,y,x);y-=(a/b)*x;return r;}
    inline ll read(){ll x=0,f=1;char c=getchar();for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;for(;isdigit(c);c=getchar()) x=x*10+c-'0';return x*f;}
    //freopen( "in.txt" , "r" , stdin );
    //freopen( "data.txt" , "w" , stdout );
    int n,sum,len;
    int a[105],vis[105];
    int cmp(int a,int b)
    {
        return a>b;
    }
    /// N:选了几根木棍 x:目前木棍的和 indx:数组开始的下标
    int dfs(int N,int x,int indx)
    {
        if(N==n+1)
            return 1;
    
        for(int i=indx;i<=n;i++)
        {
            if(vis[i]) continue;
    
            if(x+a[i]<len)
            {
                vis[i]=1;
                if(dfs(N+1,x+a[i],i+1)) return 1;
                vis[i]=0;
                
                while(a[i]==a[i+1] && i+1<=n) i++;///两个一样的木棍,不用重复判断。
            }
            else if(x+a[i]==len)
            {
                vis[i]=1;
                if(dfs(N+1,0,1)) return 1;
                vis[i]=0;
                return 0; ///如果当前木棍无法与其它木棍拼成所需木棍,那枚举的len一定不行。
            }
            if(x==0) return 0;
        }
        return 0;
    }
    int main()
    {
        while(scanf("%d",&n) && n)
        {
            sum=0;
            for(int i=1;i<=n;i++)
                scanf("%d",&a[i]),sum+=a[i];
    
            sort(a+1,a+1+n,cmp);///优先找长度大的减少递归。
    
            int ans=0,i;
            for(i=n;i>=1;i--)
            {
                if(sum%i==0 && sum/i>=a[1])
                {
                    memset(vis,0,sizeof(vis));
                    len=sum/i;
                    if(dfs(1,0,1))
                    {
                        printf("%d
    ",len);
                        break;
                    }
                }
            }
        }
        return 0;
    }
    View Code
  • 相关阅读:
    怎样才能充分利用SQL索引
    MS SQL存储过程编写经验和优化措施
    ASP調用存講過程總結
    調用外部的DLL(DllImportAttribute)
    MS SQL中的行轉列
    SQL Server乐观锁定和悲观锁定实例
    如何使用 JScript 從 HTML 網頁自動化 Excel
    了解SQL Server锁争用:NOLOCK 和 ROWLOCK 的秘密
    C#語法學習結構(Struct)
    四项技术 助你提高SQL Server的性能
  • 原文地址:https://www.cnblogs.com/Kissheart/p/9767780.html
Copyright © 2020-2023  润新知