• 模板


    普通平衡树:

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    #define ls(p) ch[p][0]
    #define rs(p) ch[p][1]
    
    const int MAXN = 100000 + 5;
    int val[MAXN], ch[MAXN][2], rnd[MAXN], siz[MAXN], tot, root;
    
    void Init() {
        tot = root = 0;
    }
    
    void PushUp(int p) {
        siz[p] = siz[ls(p)] + siz[rs(p)] + 1;
    }
    
    void SplitValue(int p, int v, int &x, int &y) {
        if(!p) {
            x = y = 0;
            return;
        }
        if(v < val[p]) {
            y = p;
            SplitValue(ls(p), v, x, ls(p));
            PushUp(y);
        } else {
            x = p;
            SplitValue(rs(p), v, rs(p), y);
            PushUp(x);
        }
    }
    
    void SplitRank(int p, int rk, int &x, int &y) {
        if(!p) {
            x = y = 0;
            return;
        }
        if(rk <= siz[ls(p)]) {
            y = p;
            SplitRank(ls(p), rk, x, ls(p));
            PushUp(y);
        } else {
            x = p;
            SplitRank(rs(p), rk - siz[ls(p)] - 1, rs(p), y);
            PushUp(x);
        }
    }
    
    int Merge(int x, int y) {
        if(!x || !y)
            return x | y;
        if(rnd[x] < rnd[y]) {
            rs(x) = Merge(rs(x), y);
            PushUp(x);
            return x;
        } else {
            ls(y) = Merge(x, ls(y));
            PushUp(y);
            return y;
        }
    }
    
    int NewNode(int v) {
        ++tot;
        ch[tot][0] = ch[tot][1] = 0;
        val[tot] = v, rnd[tot] = rand();
        siz[tot] = 1;
        return tot;
    }
    
    void Insert(int &root, int v) {
        int x = 0, y = 0;
        SplitValue(root, v, x, y);
        root = Merge(Merge(x, NewNode(v)), y);
    }
    
    void Remove(int &root, int v) {
        int x = 0, y = 0, z = 0;
        SplitValue(root, v, x, z);
        SplitValue(x, v - 1, x, y);
        y = Merge(ls(y), rs(y));
        root = Merge(Merge(x, y), z);
    }
    
    int GetRank(int &root, int v) {
        int x = 0, y = 0;
        SplitValue(root, v - 1, x, y);
        int rk = siz[x] + 1;
        root = Merge(x, y);
        return rk;
    }
    
    int GetValue(int &root, int rk) {
        int x = 0, y = 0, z = 0;
        SplitRank(root, rk, x, z);
        SplitRank(x, rk - 1, x, y);
        int v = val[y];
        root = Merge(Merge(x, y), z);
        return v;
    }
    
    int GetPrev(int &root, int v) {
        int x = 0, y = 0;
        SplitValue(root, v - 1, x, y);
        int prev = GetValue(x, siz[x]);
        root = Merge(x, y);
        return prev;
    }
    
    int GetNext(int &root, int v) {
        int x = 0, y = 0;
        SplitValue(root, v, x, y);
        int next = GetValue(y, 1);
        root = Merge(x, y);
        return next;
    }
    
    int main() {
        int n;
        scanf("%d", &n);
        Init();
        for(int i = 1; i <= n; ++i) {
            int op, x;
            scanf("%d%d", &op, &x);
            switch(op) {
                case 1:
                    Insert(root, x);
                    break;
                case 2:
                    Remove(root, x);
                    break;
                case 3:
                    printf("%d
    ", GetRank(root, x));
                    break;
                case 4:
                    printf("%d
    ", GetValue(root, x));
                    break;
                case 5:
                    printf("%d
    ", GetPrev(root, x));
                    break;
                case 6:
                    printf("%d
    ", GetNext(root, x));
                    break;
            }
        }
        return 0;
    }
    

    O(n)建树与回收:

    //O(n)建树,返回新树的根
    int st[MAXN], stop;
    char buf[MAXN];
    inline int Build(int n) {
        stop = 0;
        for(int i = 0; i < n; ++i) {
            int tmp = NewNode(buf[i]), last = 0;
            while(stop && rnd[st[stop]] > rnd[tmp]) {
                last = st[stop];
                PushUp(last);
                st[stop--] = 0;
            }
            if(stop)
                rs(st[stop]) = tmp;
            ls(tmp) = last;
            st[++stop] = tmp;
        }
        while(stop)
            PushUp(st[stop--]);
        return st[1];
    }
    
    //O(n)回收整棵树
    inline void UnBuild(int p) {
        if(!p)
            return;
        UnBuild(ls(p));
        UnBuild(rs(p));
        RecBin.push(p);
    }
    

    非递归查询:

    int GetRank2(int p, int v) {
        int rk = 1;
        while(p) {
            if(v < val[p])
                p = ls(p);
            else if(v == val[p])
                p = ls(p);
            else {
                rk += siz[ls(p)] + 1;
                p = rs(p);
            }
        }
        return rk;
    }
    
    int GetValue2(int p, int rk) {
        while(p) {
            if(rk <= siz[ls(p)])
                p = ls(p);
            else if(rk == siz[ls(p)] + 1)
                return val[p];
            else {
                rk -= siz[ls(p)] + 1;
                p = rs(p);
            }
        }
    }
    
    int GetPrev2(int p, int v) {
        int prev;
        while(p) {
            if(v <= val[p])
                p = ls(p);
            else {
                prev = val[p];
                p = rs(p);
            }
        }
        return prev;
    }
    
    int GetNext2(int p, int v) {
        int next;
        while(p) {
            if(v < val[p]) {
                next = val[p];
                p = ls(p);
            } else
                p = rs(p);
        }
        return next;
    }
    

    无旋Treap维护序列:

    操作1翻转序列[L,R],操作2查询pos位置的字符。

    #define ls(p) ch[p][0]
    #define rs(p) ch[p][1]
    
    const int MAXN = 1000000 + 5;
    char val[MAXN];
    int ch[MAXN][2], rnd[MAXN], siz[MAXN], tot, root;
    bool rev[MAXN];
    
    void Init() {
        tot = root = 0;
    }
    
    void PushUp(int p) {
        siz[p] = siz[ls(p)] + siz[rs(p)] + 1;
    }
    
    void PushDown(int p) {
        if(rev[p]) {
            swap(ls(p), rs(p));
            rev[ls(p)] ^= 1;
            rev[rs(p)] ^= 1;
            rev[p] = 0;
        }
    }
    
    void SplitRank(int p, int rk, int &x, int &y) {
        if(!p) {
            x = y = 0;
            return;
        }
        PushDown(p);
        if(rk <= siz[ls(p)]) {
            y = p;
            SplitRank(ls(p), rk, x, ls(p));
            PushUp(y);
        } else {
            x = p;
            SplitRank(rs(p), rk - siz[ls(p)] - 1, rs(p), y);
            PushUp(x);
        }
    }
    
    int Merge(int x, int y) {
        if(!x || !y)
            return x | y;
        if(rnd[x] < rnd[y]) {
            PushDown(x);
            rs(x) = Merge(rs(x), y);
            PushUp(x);
            return x;
        } else {
            PushDown(y);
            ls(y) = Merge(x, ls(y));
            PushUp(y);
            return y;
        }
    }
    
    int NewNode(int v) {
        ++tot;
        ch[tot][0] = ch[tot][1] = 0;
        val[tot] = v, rnd[tot] = rand();
        siz[tot] = 1;
        return tot;
    }
    
    void ReverseLR(int l, int r) {
        int x, y, z;
        SplitRank(root, l - 1, x, y);
        SplitRank(y, r + 1 - l, y, z);
        PushDown(y);
        rev[y] ^= 1;
        PushUp(y);
        root = Merge(Merge(x, y), z);
    }
    
    int ValuePos(int pos) {
        int x, y, z;
        SplitRank(root, pos - 1, x, z);
        SplitRank(z, 1, y, z);
        int ret = val[y];
        root = Merge(x, Merge(y, z));
        return ret;
    }
    

    需要搭配快读和线性建树才能卡过去。

  • 相关阅读:
    JAVA学习笔记(十二)
    JAVA学习笔记(十)
    JAVA学习笔记(九)
    JAVA学习笔记(八)
    JAVA学习笔记(七)
    JAVA学习笔记(六)
    JAVA学习笔记(五)
    20180313 mysql
    20180306 事件监听的方法 添加事件监听和取消事件监听 轮播图
    20180302DOM通过节点关系获取元素 表单元素 下拉列表 网页换肤 操作表格 问候
  • 原文地址:https://www.cnblogs.com/KisekiPurin2019/p/12536406.html
Copyright © 2020-2023  润新知