• codeforce 378 div 2 F —— Drivers Dissatisfaction (最小生成树,LCA,倍增)


    官方题解:

    If you choose any n - 1 roads then price of reducing overall dissatisfaction is equal to min(c1, c2, ..cn - 1) where сi is price of reducing by 1 dissatisfaction of i-th edge. So the best solution is to choose one edge and reduce dissatisfaction of it until running out of budget.

    Let's construct minimal spanning tree using Prim or Kruskal algorithm using edges of weights equal to dissatisfaction and calculate minimal price of reducing dissatisfaction. Time complexity — .

    Now we can iterate over edges implying that current is the one to be reduced to minimum. For example, for every edge we can build new MST and recalculate answer. It's . Therefore we should use this fact: it's poinless to reduce dissatisfaction of edges which weren't selected to be main.

    Then we can transform original MST instead of constructing m new ones. Add next edge to MST, now it contains a cycle from which edge with maximal dissatisfaction is about to be deleted. This can be achieved in such a way: find LCA of vertices of new edge in  and using binary lifting with precalc in  find the edge to delete.

    Time complexity — .

    大意是:

      经分析所有的预算用在一条干道上最合算(这条干道的修路花费是所挑选的n-1条干道中最小的),首先建立一棵最小生成树MST,然后枚举M条边,假设当前枚举到的边编号是i,将所有预算用到边 i 上然后添加到MST中形成一个环,找到环中权值最大的边删除。设边i的两端点为 a, b, 找到结点u = LCA(MST,a, b),那么这个环就是由 a~u,b~u 以及边 i 围成。

      如何找到权值最大的边呢?可以通过倍增法,具体做法如下:

      设mw[a][j]表示结点 a 到它的第 2^j 倍祖先的路径上权值最大的边编号,类似LCA倍增法的做法预处理出所有结点的mw[a][j]值

    for(int j = 1; (1<<j) < n; j++) //倍增
            for(int i = 1; i <= n; i++) if(pa[i][j-1] != -1){
                pa[i][j] = pa[pa[i][j-1]][j-1]; //计算节点i的第2^j倍祖先 
                int e1 = mw[i][j-1];
                int e2 = mw[pa[i][j-1]][j-1]; 
                mw[i][j] = weight[e1] < weight[e2] ? e2 : e1;
            }

    然后计算更换边之后新树的权值,找到使总干道权值最低的更新方法,最后跑一边最小生成树算法即可。

    代码如下:

      1 #include <cstdio>
      2 #include <iostream>
      3 #include <algorithm>
      4 #include <cstring>
      5 #include <vector>
      6 #include <queue>
      7 
      8 using namespace std;
      9 const int maxn = 2e5 + 10;
     10 
     11 #define rep(i, x, n) for(int i = x; i <= n; i++)
     12 struct edge{
     13     int u, v;
     14     int w, c;
     15     edge(int uu, int vv, int ww, int cc): u(uu), v(vv), w(ww), c(cc){}
     16     bool operator<(const edge& b) const {
     17         return w < b.w;
     18     }
     19 };
     20 
     21 typedef long long LL;
     22 vector<edge> E;
     23 int r[maxn];
     24 vector<int> G[maxn];
     25 
     26 void add_edge(int a, int b, int w, int c) {
     27     E.push_back(edge(a, b, w, c));
     28     int id = E.size() - 1;
     29     G[a].push_back(id);
     30     G[b].push_back(id);
     31 }
     32 
     33 int n, m, S;
     34 int w[maxn];
     35 int c[maxn];
     36 int fa[maxn];
     37 LL w_mst;
     38 int findfa(int x) {return x == fa[x] ? x : fa[x] = findfa(fa[x]);} //并查集
     39 vector<int> G2[maxn];
     40 bool cmp(int a, int b) {
     41     return E[a] < E[b];
     42 }
     43 vector<int> A;
     44 LL kurskal() {        //计算MST
     45     LL ans = 0;
     46     for(int i = 1; i <= n; i++) fa[i] = i;
     47     for(int i = 0; i < m; i++)    r[i] = i;    
     48     sort(r, r+m, cmp); 
     49     for(int i = 0; i < m; i++) {
     50         edge e = E[r[i]];
     51         int x = findfa(e.u); 
     52         int y = findfa(e.v);
     53         if(x != y) {
     54             fa[x] = y;
     55             ans += e.w;
     56             A.push_back(r[i]); //将添加的边同时保存在A中
     57             G2[e.u].push_back(r[i]);
     58             G2[e.v].push_back(r[i]);
     59         }
     60     }    
     61     return ans;
     62 }
     63 int dep[maxn];
     64 int pa[maxn][50]; //表示结点a的第 2^j 倍祖先
     65 int mw[maxn][50]; //表示结点 a 到它的第 2^j 倍祖先的路径上权值最大的边编号
     66 void dfs(int u, int f, int d) {  //dfs计算MST中所有结点的深度,初始化pa数组和mw数组
     67     dep[u] = d;
     68     pa[u][0] = f;
     69     for(int i = 0; i < G2[u].size(); i++) {
     70         edge& e = E[G2[u][i]];
     71         int v = e.u == u ? e.v : e.u;
     72         if(v != f) {
     73             mw[v][0] = G2[u][i];
     74             dfs(v, u, d+1);
     75         }
     76     }
     77 }
     78 void pre() { //预处理出所有结点的mw,pa
     79     for(int j = 1; (1<<j) < n; j++) 
     80         for(int i = 1; i <= n; i++) if(pa[i][j-1] != -1){
     81             pa[i][j] = pa[pa[i][j-1]][j-1];    
     82             int e1 = mw[i][j-1];
     83             int e2 = mw[pa[i][j-1]][j-1]; 
     84             mw[i][j] = E[e1] < E[e2] ? e2 : e1;
     85         }
     86 }
     87 
     88 int lca(int a, int b, int &me) { //计算最近公共祖先的同时算出a,b路径中权值最大的边保存到me中
     89     me = -1;
     90     if(dep[a] < dep[b]) swap(a, b);
     91     int i, j;
     92     for(i = 0; (1<<i) <= dep[a]; i++);
     93     i--;
     94     for(j = i; j >= 0; j--) 
     95         if(dep[a] - (1<<j) >= dep[b]) {
     96             int e_id = mw[a][j];
     97             a = pa[a][j];
     98             if(me == -1) me = e_id;
     99             me = E[me] < E[e_id] ? e_id : me;
    100         }
    101     if(a == b) return a;
    102     for(j = i; j >= 0; j--) 
    103         if(pa[a][j] != -1 && pa[a][j] != pa[b][j]) {
    104             int e1 = mw[a][j];
    105             int e2 = mw[b][j];
    106             a = pa[a][j];
    107             b = pa[b][j];
    108             if(me == -1) me = e1;
    109             me = E[me] < E[e1] ? e1 : me;
    110             me = E[me] < E[e2] ? e2 : me;
    111         }
    112     int e1 = mw[a][0];
    113     int e2 = mw[b][0];
    114     if(me == -1) me = e1;
    115     me = E[me] < E[e1] ? e1 : me;
    116     me = E[me] < E[e2] ? e2 : me;
    117     return pa[a][0];
    118 }
    119 int main() {
    120     scanf("%d%d", &n, &m);
    121     for(int i = 1; i <= m; i++) scanf("%d", &w[i]);
    122     for(int i = 1; i <= m; i++) scanf("%d", &c[i]);
    123     for(int i = 1; i <= m; i++) {
    124         int a, b;
    125         scanf("%d%d", &a, &b);
    126         add_edge(a, b, w[i], c[i]);
    127     }
    128     scanf("%d", &S);
    129     w_mst = kurskal();
    130     memset(pa, -1, sizeof pa);
    131     memset(mw, 0, sizeof mw);
    132     dfs(1, -1, 0);
    133     pre();
    134     LL ans_w = w_mst;
    135     int ans_e = -1;
    136     for(int i = 1; i <= m; i++) {
    137         int e = i-1;    
    138         int me; 
    139         lca(E[e].u, E[e].v, me);    
    140         LL temp = w_mst - E[me].w + E[e].w - S/c[i];
    141         //cout << i <<" :  me : "<< me <<endl;
    142         if(temp < ans_w) {
    143             ans_w =    temp; 
    144             ans_e = e;
    145             //cout << "ans_w : " << ans_w<< "ans_e : " << ans_e+1 <<endl;
    146         }
    147     }
    148     if(ans_e != -1) E[ans_e].w -= S/c[ans_e+1];
    149     A.clear();
    150     w_mst = kurskal();
    151     cout << ans_w << endl;
    152     for(int i = 0; i < A.size(); i++) 
    153         cout << A[i] + 1<< " " << E[A[i]].w << endl;
    154     return 0;
    155 }
  • 相关阅读:
    Git 使用记录
    vue threejs
    git如何忽略历史中的文件
    SwiftUI init函数中查询并赋值数据
    SwiftUI Binding数据类型转换
    隐私政策
    Apple开发_神奇资源汇总
    centos安装python记录
    LINUX服务器运行Python出现ModuleNotFoundError的解决方案
    创建Django项目过程
  • 原文地址:https://www.cnblogs.com/Kiraa/p/6141351.html
Copyright © 2020-2023  润新知