一、基本介绍
MD系列算法是信息摘要三大算法中的一种,全称:Message Digest算法,按照规范版本分为MD2、MD4、MD5三种算法,目前最常用的是MD5版本算法。本文介绍MD2算法的实现原理。
1989年,MD2是由著名的非对称算法RSA发明人之一–麻省理工学院教授罗纳德-里维斯特开发的;这个算法首先对信息进行数据补位,使信息的字节长度是16的倍数,再以16位的检验和作为补充信息追加到原信息的末尾。最后根据这个新产生的信息计算出一个128位的散列值,MD2算法由此诞生。
二、实现原理
有关MD2 算法详情请参见 RFC 1319 http://www.ietf.org/rfc/rfc1319.txt,RFC 1319 是MD2算法的官方文档,其实现原理共分为5步:
第1步:字节填充(Append Padding Bytes)
填充1~16个字节,确保是16字节的倍数,填充规则如下:
假设数据长度为m, 则需要填充16 - (m mod 16)个字节的数据,填充内容为16 - (m mod 16)。
第2步:添加校验和(Append Checksum)
根据下列算法计算校验和,并追加到第1步填充数据的后面。
/* Clear checksum. */
For i = 0 to 15 do:
Set C[i] to 0.
end /* of loop on i */
Set L to 0.
/* Process each 16-word block. */
For i = 0 to N/16-1 do
/* Checksum block i. */
For j = 0 to 15 do
Set c to M[i*16+j].
Set C[j] to S[c xor L].
Set L to C[j].
end /* of loop on j */
end /* of loop on i */
第3步:初始化MD Buffer(Initialize MD Buffer)
最简单不过了,定义一个48字节数组X并初始化为0。
第4步:处理消息块(Process Message in 16-Byte Blocks)
这个是MD2算法最核心的部分了,对第2步组装数据进行分块依次处理。
/* Process each 16-word block. */ For i = 0 to N'/16-1 do
/* Copy block i into X. */ For j = 0 to 15 do Set X[16+j] to M[i*16+j]. Set X[32+j] to (X[16+j] xor X[j]). end /* of loop on j */ Set t to 0. /* Do 18 rounds. */ For j = 0 to 17 do /* Round j. */ For k = 0 to 47 do Set t and X[k] to (X[k] xor S[t]). end /* of loop on k */ Set t to (t+j) modulo 256. end /* of loop on j */ end /* of loop on i */
第5步:输出(Output)
这一步也非常简单,只需要将计算后的X前16字节进行输出就可以了
三、示例讲解
四、代码实现
以下为C/C++代码实现:
#include <string.h> #include <stdio.h> #define HASH_BLOCK_SIZE 16 #define HASH_DIGEST_SIZE 16 #define HASH_ROUND_NUM 18 #define MD2_CHECKSUM_SIZE 16 #define ASSERT_RETURN_INT(x, d) if(!(x)) { return d; } /* * The S Box of MD2 are generated from Pi digits. */ static const unsigned char S[256] = { 0x29, 0x2E, 0x43, 0xC9, 0xA2, 0xD8, 0x7C, 0x01, 0x3D, 0x36, 0x54, 0xA1, 0xEC, 0xF0, 0x06, 0x13, 0x62, 0xA7, 0x05, 0xF3, 0xC0, 0xC7, 0x73, 0x8C, 0x98, 0x93, 0x2B, 0xD9, 0xBC, 0x4C, 0x82, 0xCA, 0x1E, 0x9B, 0x57, 0x3C, 0xFD, 0xD4, 0xE0, 0x16, 0x67, 0x42, 0x6F, 0x18, 0x8A, 0x17, 0xE5, 0x12, 0xBE, 0x4E, 0xC4, 0xD6, 0xDA, 0x9E, 0xDE, 0x49, 0xA0, 0xFB, 0xF5, 0x8E, 0xBB, 0x2F, 0xEE, 0x7A, 0xA9, 0x68, 0x79, 0x91, 0x15, 0xB2, 0x07, 0x3F, 0x94, 0xC2, 0x10, 0x89, 0x0B, 0x22, 0x5F, 0x21, 0x80, 0x7F, 0x5D, 0x9A, 0x5A, 0x90, 0x32, 0x27, 0x35, 0x3E, 0xCC, 0xE7, 0xBF, 0xF7, 0x97, 0x03, 0xFF, 0x19, 0x30, 0xB3, 0x48, 0xA5, 0xB5, 0xD1, 0xD7, 0x5E, 0x92, 0x2A, 0xAC, 0x56, 0xAA, 0xC6, 0x4F, 0xB8, 0x38, 0xD2, 0x96, 0xA4, 0x7D, 0xB6, 0x76, 0xFC, 0x6B, 0xE2, 0x9C, 0x74, 0x04, 0xF1, 0x45, 0x9D, 0x70, 0x59, 0x64, 0x71, 0x87, 0x20, 0x86, 0x5B, 0xCF, 0x65, 0xE6, 0x2D, 0xA8, 0x02, 0x1B, 0x60, 0x25, 0xAD, 0xAE, 0xB0, 0xB9, 0xF6, 0x1C, 0x46, 0x61, 0x69, 0x34, 0x40, 0x7E, 0x0F, 0x55, 0x47, 0xA3, 0x23, 0xDD, 0x51, 0xAF, 0x3A, 0xC3, 0x5C, 0xF9, 0xCE, 0xBA, 0xC5, 0xEA, 0x26, 0x2C, 0x53, 0x0D, 0x6E, 0x85, 0x28, 0x84, 0x09, 0xD3, 0xDF, 0xCD, 0xF4, 0x41, 0x81, 0x4D, 0x52, 0x6A, 0xDC, 0x37, 0xC8, 0x6C, 0xC1, 0xAB, 0xFA, 0x24, 0xE1, 0x7B, 0x08, 0x0C, 0xBD, 0xB1, 0x4A, 0x78, 0x88, 0x95, 0x8B, 0xE3, 0x63, 0xE8, 0x6D, 0xE9, 0xCB, 0xD5, 0xFE, 0x3B, 0x00, 0x1D, 0x39, 0xF2, 0xEF, 0xB7, 0x0E, 0x66, 0x58, 0xD0, 0xE4, 0xA6, 0x77, 0x72, 0xF8, 0xEB, 0x75, 0x4B, 0x0A, 0x31, 0x44, 0x50, 0xB4, 0x8F, 0xED, 0x1F, 0x1A, 0xDB, 0x99, 0x8D, 0x33, 0x9F, 0x11, 0x83, 0x14 }; int md2(unsigned char *out, const unsigned char* in, const int inlen) { ASSERT_RETURN_INT(out && in && (inlen >= 0), 1); int i = 0, j = 0, k = 0; unsigned char L = 0, t = 0; // step 1: 字节填充(Append Padding Bytes) // 假设数据长度为m, 则需要填充16 - (m mod 16)个字节的数据,填充内容为16 - (m mod 16). int iLen = (inlen / HASH_BLOCK_SIZE + 1) * HASH_BLOCK_SIZE; unsigned char* M = malloc(iLen + MD2_CHECKSUM_SIZE); memcpy(M, in, inlen); for (i = inlen; i < iLen; i++) { M[i] = iLen - inlen; } // step 2: 添加校验和(Append Checksum) unsigned char C[MD2_CHECKSUM_SIZE]; memset(C, 0, MD2_CHECKSUM_SIZE); for (i = 0; i < iLen / HASH_BLOCK_SIZE; i++) { for (j = 0; j < HASH_BLOCK_SIZE; j++) { unsigned char c = M[i * 16 + j]; C[j] = C[j] ^ S[c ^ L]; L = C[j]; } } memcpy(M + iLen, C, HASH_BLOCK_SIZE); // step 3: 初始化MD Buffer(Initialize MD Buffer): unsigned char X[48]; memset(X, 0, 48); // step 4: 处理消息块(Process Message in 16-Byte Blocks) for (i = 0; i < (iLen + 16) / HASH_BLOCK_SIZE; i++) { /* Copy block i into X. */ for (j = 0; j < HASH_BLOCK_SIZE; j++) { X[16 + j] = M[i * 16 + j]; X[32 + j] = X[16 + j] ^ X[j]; } t = 0; /* Do 18 rounds. */ for (j = 0; j < HASH_ROUND_NUM; j++) { /* Round j */ for (k = 0; k < 48; k++) { t = X[k] = X[k] ^ S[t]; } t = (t + j) % 256; } } memcpy(out, X, HASH_DIGEST_SIZE); free(M); return 0; } int main() { unsigned char digest[16] = { 0 }; md2(digest, "Hello World!", strlen("Hello World!")); return 0; }