• 狂斌计算机和模版


    // `计算几何模板`
    const double eps = 1e-8;
    const double inf = 1e20;
    const double pi = acos(-1.0);
    const int maxp = 1010;
    //`Compares a double to zero`
    int sgn(double x){
        if(fabs(x) < eps)return 0;
        if(x < 0)return -1;
        else return 1;
    }
    //square of a double
    inline double sqr(double x){return x*x;}
    /*
     * Point
     * Point()               - Empty constructor
     * Point(double _x,double _y)  - constructor
     * input()             - double input
     * output()            - %.2f output
     * operator ==         - compares x and y
     * operator <          - compares first by x, then by y
     * operator -          - return new Point after subtracting curresponging x and y
     * operator ^          - cross product of 2d points
     * operator *          - dot product
     * len()               - gives length from origin
     * len2()              - gives square of length from origin
     * distance(Point p)   - gives distance from p
     * operator + Point b  - returns new Point after adding curresponging x and y
     * operator * double k - returns new Point after multiplieing x and y by k
     * operator / double k - returns new Point after divideing x and y by k
     * rad(Point a,Point b)- returns the angle of Point a and Point b from this Point
     * trunc(double r)     - return Point that if truncated the distance from center to r
     * rotleft()           - returns 90 degree ccw rotated point
     * rotright()          - returns 90 degree cw rotated point
     * rotate(Point p,double angle) - returns Point after rotateing the Point centering at p by angle radian ccw
     */
    struct Point{
        double x,y;
        Point(){}
        Point(double _x,double _y){
            x = _x;
            y = _y;
        }
        void input(){
            scanf("%lf%lf",&x,&y);
        }
        void output(){
            printf("%.2f %.2f
    ",x,y);
        }
        bool operator == (Point b)const{
            return sgn(x-b.x) == 0 && sgn(y-b.y) == 0;
        }
        bool operator < (Point b)const{
            return sgn(x-b.x)== 0?sgn(y-b.y)<0:x<b.x;
        }
        Point operator -(const Point &b)const{
            return Point(x-b.x,y-b.y);
        }
        //叉积
        double operator ^(const Point &b)const{
            return x*b.y - y*b.x;
        }
        //点积
        double operator *(const Point &b)const{
            return x*b.x + y*b.y;
        }
        //返回长度
        double len(){
            return hypot(x,y);//库函数
        }
        //返回长度的平方
        double len2(){
            return x*x + y*y;
        }
        //返回两点的距离
        double distance(Point p){
            return hypot(x-p.x,y-p.y);
        }
        Point operator +(const Point &b)const{
            return Point(x+b.x,y+b.y);
        }
        Point operator *(const double &k)const{
            return Point(x*k,y*k);
        }
        Point operator /(const double &k)const{
            return Point(x/k,y/k);
        }
        //`计算pa  和  pb 的夹角`
        //`就是求这个点看a,b 所成的夹角`
        //`测试 LightOJ1203`
        double rad(Point a,Point b){
            Point p = *this;
            return fabs(atan2( fabs((a-p)^(b-p)),(a-p)*(b-p) ));
        }
        //`化为长度为r的向量`
        Point trunc(double r){
            double l = len();
            if(!sgn(l))return *this;
            r /= l;
            return Point(x*r,y*r);
        }
        //`逆时针旋转90度`
        Point rotleft(){
            return Point(-y,x);
        }
        //`顺时针旋转90度`
        Point rotright(){
            return Point(y,-x);
        }
        //`绕着p点逆时针旋转angle`
        Point rotate(Point p,double angle){
            Point v = (*this) - p;
            double c = cos(angle), s = sin(angle);
            return Point(p.x + v.x*c - v.y*s,p.y + v.x*s + v.y*c);
        }
    };
    /*
     * Stores two points
     * Line()                         - Empty constructor
     * Line(Point _s,Point _e)        - Line through _s and _e
     * operator ==                    - checks if two points are same
     * Line(Point p,double angle)     - one end p , another end at angle degree
     * Line(double a,double b,double c) - Line of equation ax + by + c = 0
     * input()                        - inputs s and e
     * adjust()                       - orders in such a way that s < e
     * length()                       - distance of se
     * angle()                        - return 0 <= angle < pi
     * relation(Point p)              - 3 if point is on line
     *                                  1 if point on the left of line
     *                                  2 if point on the right of line
     * pointonseg(double p)           - return true if point on segment
     * parallel(Line v)               - return true if they are parallel
     * segcrossseg(Line v)            - returns 0 if does not intersect
     *                                  returns 1 if non-standard intersection
     *                                  returns 2 if intersects
     * linecrossseg(Line v)           - line and seg
     * linecrossline(Line v)          - 0 if parallel
     *                                  1 if coincides
     *                                  2 if intersects
     * crosspoint(Line v)             - returns intersection point
     * dispointtoline(Point p)        - distance from point p to the line
     * dispointtoseg(Point p)         - distance from p to the segment
     * dissegtoseg(Line v)            - distance of two segment
     * lineprog(Point p)              - returns projected point p on se line
     * symmetrypoint(Point p)         - returns reflection point of p over se
     *
     */
    struct Line{
        Point s,e;
        Line(){}
        Line(Point _s,Point _e){
            s = _s;
            e = _e;
        }
        bool operator ==(Line v){
            return (s == v.s)&&(e == v.e);
        }
        //`根据一个点和倾斜角angle确定直线,0<=angle<pi`
        Line(Point p,double angle){
            s = p;
            if(sgn(angle-pi/2) == 0){
                e = (s + Point(0,1));
            }
            else{
                e = (s + Point(1,tan(angle)));
            }
        }
        //ax+by+c=0
        Line(double a,double b,double c){
            if(sgn(a) == 0){
                s = Point(0,-c/b);
                e = Point(1,-c/b);
            }
            else if(sgn(b) == 0){
                s = Point(-c/a,0);
                e = Point(-c/a,1);
            }
            else{
                s = Point(0,-c/b);
                e = Point(1,(-c-a)/b);
            }
        }
        void input(){
            s.input();
            e.input();
        }
        void adjust(){
            if(e < s)swap(s,e);
        }
        //求线段长度
        double length(){
            return s.distance(e);
        }
        //`返回直线倾斜角 0<=angle<pi`
        double angle(){
            double k = atan2(e.y-s.y,e.x-s.x);
            if(sgn(k) < 0)k += pi;
            if(sgn(k-pi) == 0)k -= pi;
            return k;
        }
        //`点和直线关系`
        //`1  在左侧`
        //`2  在右侧`
        //`3  在直线上`
        int relation(Point p){
            int c = sgn((p-s)^(e-s));
            if(c < 0)return 1;
            else if(c > 0)return 2;
            else return 3;
        }
        // 点在线段上的判断
        bool pointonseg(Point p){
            return sgn((p-s)^(e-s)) == 0 && sgn((p-s)*(p-e)) <= 0;
        }
        //`两向量平行(对应直线平行或重合)`
        bool parallel(Line v){
            return sgn((e-s)^(v.e-v.s)) == 0;
        }
        //`两线段相交判断`
        //`2 规范相交`
        //`1 非规范相交`
        //`0 不相交`
        int segcrossseg(Line v){
            int d1 = sgn((e-s)^(v.s-s));
            int d2 = sgn((e-s)^(v.e-s));
            int d3 = sgn((v.e-v.s)^(s-v.s));
            int d4 = sgn((v.e-v.s)^(e-v.s));
            if( (d1^d2)==-2 && (d3^d4)==-2 )return 2;
            return (d1==0 && sgn((v.s-s)*(v.s-e))<=0) ||
                (d2==0 && sgn((v.e-s)*(v.e-e))<=0) ||
                (d3==0 && sgn((s-v.s)*(s-v.e))<=0) ||
                (d4==0 && sgn((e-v.s)*(e-v.e))<=0);
        }
        //`直线和线段相交判断`
        //`-*this line   -v seg`
        //`2 规范相交`
        //`1 非规范相交`
        //`0 不相交`
        int linecrossseg(Line v){
            int d1 = sgn((e-s)^(v.s-s));
            int d2 = sgn((e-s)^(v.e-s));
            if((d1^d2)==-2) return 2;
            return (d1==0||d2==0);
        }
        //`两直线关系`
        //`0 平行`
        //`1 重合`
        //`2 相交`
        int linecrossline(Line v){
            if((*this).parallel(v))
                return v.relation(s)==3;
            return 2;
        }
        //`求两直线的交点`
        //`要保证两直线不平行或重合`
        Point crosspoint(Line v){
            double a1 = (v.e-v.s)^(s-v.s);
            double a2 = (v.e-v.s)^(e-v.s);
            return Point((s.x*a2-e.x*a1)/(a2-a1),(s.y*a2-e.y*a1)/(a2-a1));
        }
        //点到直线的距离
        double dispointtoline(Point p){
            return fabs((p-s)^(e-s))/length();
        }
        //点到线段的距离
        double dispointtoseg(Point p){
            if(sgn((p-s)*(e-s))<0 || sgn((p-e)*(s-e))<0)
                return min(p.distance(s),p.distance(e));
            return dispointtoline(p);
        }
        //`返回线段到线段的距离`
        //`前提是两线段不相交,相交距离就是0了`
        double dissegtoseg(Line v){
            return min(min(dispointtoseg(v.s),dispointtoseg(v.e)),min(v.dispointtoseg(s),v.dispointtoseg(e)));
        }
        //`返回点p在直线上的投影`
        Point lineprog(Point p){
            return s + ( ((e-s)*((e-s)*(p-s)))/((e-s).len2()) );
        }
        //`返回点p关于直线的对称点`
        Point symmetrypoint(Point p){
            Point q = lineprog(p);
            return Point(2*q.x-p.x,2*q.y-p.y);
        }
    };
    //
    struct circle{
        Point p;//圆心
        double r;//半径
        circle(){}
        circle(Point _p,double _r){
            p = _p;
            r = _r;
        }
        circle(double x,double y,double _r){
            p = Point(x,y);
            r = _r;
        }
        //`三角形的外接圆`
        //`需要Point的+ /  rotate()  以及Line的crosspoint()`
        //`利用两条边的中垂线得到圆心`
        //`测试:UVA12304`
        circle(Point a,Point b,Point c){
            Line u = Line((a+b)/2,((a+b)/2)+((b-a).rotleft()));
            Line v = Line((b+c)/2,((b+c)/2)+((c-b).rotleft()));
            p = u.crosspoint(v);
            r = p.distance(a);
        }
        //`三角形的内切圆`
        //`参数bool t没有作用,只是为了和上面外接圆函数区别`
        //`测试:UVA12304`
        circle(Point a,Point b,Point c,bool t){
            Line u,v;
            double m = atan2(b.y-a.y,b.x-a.x), n = atan2(c.y-a.y,c.x-a.x);
            u.s = a;
            u.e = u.s + Point(cos((n+m)/2),sin((n+m)/2));
            v.s = b;
            m = atan2(a.y-b.y,a.x-b.x) , n = atan2(c.y-b.y,c.x-b.x);
            v.e = v.s + Point(cos((n+m)/2),sin((n+m)/2));
            p = u.crosspoint(v);
            r = Line(a,b).dispointtoseg(p);
        }
        //输入
        void input(){
            p.input();
            scanf("%lf",&r);
        }
        //输出
        void output(){
            printf("%.2lf %.2lf %.2lf
    ",p.x,p.y,r);
        }
        bool operator == (circle v){
            return (p==v.p) && sgn(r-v.r)==0;
        }
        bool operator < (circle v)const{
            return ((p<v.p)||((p==v.p)&&sgn(r-v.r)<0));
        }
        //面积
        double area(){
            return pi*r*r;
        }
        //周长
        double circumference(){
            return 2*pi*r;
        }
        //`点和圆的关系`
        //`0 圆外`
        //`1 圆上`
        //`2 圆内`
        int relation(Point b){
            double dst = b.distance(p);
            if(sgn(dst-r) < 0)return 2;
            else if(sgn(dst-r)==0)return 1;
            return 0;
        }
        //`线段和圆的关系`
        //`比较的是圆心到线段的距离和半径的关系`
        int relationseg(Line v){
            double dst = v.dispointtoseg(p);
            if(sgn(dst-r) < 0)return 2;
            else if(sgn(dst-r) == 0)return 1;
            return 0;
        }
        //`直线和圆的关系`
        //`比较的是圆心到直线的距离和半径的关系`
        int relationline(Line v){
            double dst = v.dispointtoline(p);
            if(sgn(dst-r) < 0)return 2;
            else if(sgn(dst-r) == 0)return 1;
            return 0;
        }
        //`两圆的关系`
        //`5 相离`
        //`4 外切`
        //`3 相交`
        //`2 内切`
        //`1 内含`
        //`需要Point的distance`
        //`测试:UVA12304`
        int relationcircle(circle v){
            double d = p.distance(v.p);
            if(sgn(d-r-v.r) > 0)return 5;
            if(sgn(d-r-v.r) == 0)return 4;
            double l = fabs(r-v.r);
            if(sgn(d-r-v.r)<0 && sgn(d-l)>0)return 3;
            if(sgn(d-l)==0)return 2;
            if(sgn(d-l)<0)return 1;
        }
        //`求两个圆的交点,返回0表示没有交点,返回1是一个交点,2是两个交点`
        //`需要relationcircle`
        //`测试:UVA12304`
        int pointcrosscircle(circle v,Point &p1,Point &p2){
            int rel = relationcircle(v);
            if(rel == 1 || rel == 5)return 0;
            double d = p.distance(v.p);
            double l = (d*d+r*r-v.r*v.r)/(2*d);
            double h = sqrt(r*r-l*l);
            Point tmp = p + (v.p-p).trunc(l);
            p1 = tmp + ((v.p-p).rotleft().trunc(h));
            p2 = tmp + ((v.p-p).rotright().trunc(h));
            if(rel == 2 || rel == 4)
                return 1;
            return 2;
        }
        //`求直线和圆的交点,返回交点个数`
        int pointcrossline(Line v,Point &p1,Point &p2){
            if(!(*this).relationline(v))return 0;
            Point a = v.lineprog(p);
            double d = v.dispointtoline(p);
            d = sqrt(r*r-d*d);
            if(sgn(d) == 0){
                p1 = a;
                p2 = a;
                return 1;
            }
            p1 = a + (v.e-v.s).trunc(d);
            p2 = a - (v.e-v.s).trunc(d);
            return 2;
        }
        //`得到过a,b两点,半径为r1的两个圆`
        int gercircle(Point a,Point b,double r1,circle &c1,circle &c2){
            circle x(a,r1),y(b,r1);
            int t = x.pointcrosscircle(y,c1.p,c2.p);
            if(!t)return 0;
            c1.r = c2.r = r;
            return t;
        }
        //`得到与直线u相切,过点q,半径为r1的圆`
        //`测试:UVA12304`
        int getcircle(Line u,Point q,double r1,circle &c1,circle &c2){
            double dis = u.dispointtoline(q);
            if(sgn(dis-r1*2)>0)return 0;
            if(sgn(dis) == 0){
                c1.p = q + ((u.e-u.s).rotleft().trunc(r1));
                c2.p = q + ((u.e-u.s).rotright().trunc(r1));
                c1.r = c2.r = r1;
                return 2;
            }
            Line u1 = Line((u.s + (u.e-u.s).rotleft().trunc(r1)),(u.e + (u.e-u.s).rotleft().trunc(r1)));
            Line u2 = Line((u.s + (u.e-u.s).rotright().trunc(r1)),(u.e + (u.e-u.s).rotright().trunc(r1)));
            circle cc = circle(q,r1);
            Point p1,p2;
            if(!cc.pointcrossline(u1,p1,p2))cc.pointcrossline(u2,p1,p2);
            c1 = circle(p1,r1);
            if(p1 == p2){
                c2 = c1;
                return 1;
            }
            c2 = circle(p2,r1);
            return 2;
        }
        //`同时与直线u,v相切,半径为r1的圆`
        //`测试:UVA12304`
        int getcircle(Line u,Line v,double r1,circle &c1,circle &c2,circle &c3,circle &c4){
            if(u.parallel(v))return 0;//两直线平行
            Line u1 = Line(u.s + (u.e-u.s).rotleft().trunc(r1),u.e + (u.e-u.s).rotleft().trunc(r1));
            Line u2 = Line(u.s + (u.e-u.s).rotright().trunc(r1),u.e + (u.e-u.s).rotright().trunc(r1));
            Line v1 = Line(v.s + (v.e-v.s).rotleft().trunc(r1),v.e + (v.e-v.s).rotleft().trunc(r1));
            Line v2 = Line(v.s + (v.e-v.s).rotright().trunc(r1),v.e + (v.e-v.s).rotright().trunc(r1));
            c1.r = c2.r = c3.r = c4.r = r1;
            c1.p = u1.crosspoint(v1);
            c2.p = u1.crosspoint(v2);
            c3.p = u2.crosspoint(v1);
            c4.p = u2.crosspoint(v2);
            return 4;
        }
        //`同时与不相交圆cx,cy相切,半径为r1的圆`
        //`测试:UVA12304`
        int getcircle(circle cx,circle cy,double r1,circle &c1,circle &c2){
            circle x(cx.p,r1+cx.r),y(cy.p,r1+cy.r);
            int t = x.pointcrosscircle(y,c1.p,c2.p);
            if(!t)return 0;
            c1.r = c2.r = r1;
            return t;
        }
    
        //`过一点作圆的切线(先判断点和圆的关系)`
        //`测试:UVA12304`
        int tangentline(Point q,Line &u,Line &v){
            int x = relation(q);
            if(x == 2)return 0;
            if(x == 1){
                u = Line(q,q + (q-p).rotleft());
                v = u;
                return 1;
            }
            double d = p.distance(q);
            double l = r*r/d;
            double h = sqrt(r*r-l*l);
            u = Line(q,p + ((q-p).trunc(l) + (q-p).rotleft().trunc(h)));
            v = Line(q,p + ((q-p).trunc(l) + (q-p).rotright().trunc(h)));
            return 2;
        }
        //`求两圆相交的面积`
        double areacircle(circle v){
            int rel = relationcircle(v);
            if(rel >= 4)return 0.0;
            if(rel <= 2)return min(area(),v.area());
            double d = p.distance(v.p);
            double hf = (r+v.r+d)/2.0;
            double ss = 2*sqrt(hf*(hf-r)*(hf-v.r)*(hf-d));
            double a1 = acos((r*r+d*d-v.r*v.r)/(2.0*r*d));
            a1 = a1*r*r;
            double a2 = acos((v.r*v.r+d*d-r*r)/(2.0*v.r*d));
            a2 = a2*v.r*v.r;
            return a1+a2-ss;
        }
        //`求圆和三角形pab的相交面积`
        //`测试:POJ3675 HDU3982 HDU2892`
        double areatriangle(Point a,Point b){
            if(sgn((p-a)^(p-b)) == 0)return 0.0;
            Point q[5];
            int len = 0;
            q[len++] = a;
            Line l(a,b);
            Point p1,p2;
            if(pointcrossline(l,q[1],q[2])==2){
                if(sgn((a-q[1])*(b-q[1]))<0)q[len++] = q[1];
                if(sgn((a-q[2])*(b-q[2]))<0)q[len++] = q[2];
            }
            q[len++] = b;
            if(len == 4 && sgn((q[0]-q[1])*(q[2]-q[1]))>0)swap(q[1],q[2]);
            double res = 0;
            for(int i = 0;i < len-1;i++){
                if(relation(q[i])==0||relation(q[i+1])==0){
                    double arg = p.rad(q[i],q[i+1]);
                    res += r*r*arg/2.0;
                }
                else{
                    res += fabs((q[i]-p)^(q[i+1]-p))/2.0;
                }
            }
            return res;
        }
    };
    
    /*
     * n,p  Line l for each side
     * input(int _n)                        - inputs _n size polygon
     * add(Point q)                         - adds a point at end of the list
     * getline()                            - populates line array
     * cmp                                  - comparision in convex_hull order
     * norm()                               - sorting in convex_hull order
     * getconvex(polygon &convex)           - returns convex hull in convex
     * Graham(polygon &convex)              - returns convex hull in convex
     * isconvex()                           - checks if convex
     * relationpoint(Point q)               - returns 3 if q is a vertex
     *                                                2 if on a side
     *                                                1 if inside
     *                                                0 if outside
     * convexcut(Line u,polygon &po)        - left side of u in po
     * gercircumference()                   - returns side length
     * getarea()                            - returns area
     * getdir()                             - returns 0 for cw, 1 for ccw
     * getbarycentre()                      - returns barycenter
     *
     */
    struct polygon{
        int n;
        Point p[maxp];
        Line l[maxp];
        void input(int _n){
            n = _n;
            for(int i = 0;i < n;i++)
                p[i].input();
        }
        void add(Point q){
            p[n++] = q;
        }
        void getline(){
            for(int i = 0;i < n;i++){
                l[i] = Line(p[i],p[(i+1)%n]);
            }
        }
        struct cmp{
            Point p;
            cmp(const Point &p0){p = p0;}
            bool operator()(const Point &aa,const Point &bb){
                Point a = aa, b = bb;
                int d = sgn((a-p)^(b-p));
                if(d == 0){
                    return sgn(a.distance(p)-b.distance(p)) < 0;
                }
                return d > 0;
            }
        };
        //`进行极角排序`
        //`首先需要找到最左下角的点`
        //`需要重载号好Point的 < 操作符(min函数要用) `
        void norm(){
            Point mi = p[0];
            for(int i = 1;i < n;i++)mi = min(mi,p[i]);
            sort(p,p+n,cmp(mi));
        }
        //`得到凸包`
        //`得到的凸包里面的点编号是0$sim$n-1的`
        //`两种凸包的方法`
        //`注意如果有影响,要特判下所有点共点,或者共线的特殊情况`
        //`测试 LightOJ1203  LightOJ1239`
        void getconvex(polygon &convex){
            sort(p,p+n);
            convex.n = n;
            for(int i = 0;i < min(n,2);i++){
                convex.p[i] = p[i];
            }
            if(convex.n == 2 && (convex.p[0] == convex.p[1]))convex.n--;//特判
            if(n <= 2)return;
            int &top = convex.n;
            top = 1;
            for(int i = 2;i < n;i++){
                while(top && sgn((convex.p[top]-p[i])^(convex.p[top-1]-p[i])) <= 0)
                    top--;
                convex.p[++top] = p[i];
            }
            int temp = top;
            convex.p[++top] = p[n-2];
            for(int i = n-3;i >= 0;i--){
                while(top != temp && sgn((convex.p[top]-p[i])^(convex.p[top-1]-p[i])) <= 0)
                    top--;
                convex.p[++top] = p[i];
            }
            if(convex.n == 2 && (convex.p[0] == convex.p[1]))convex.n--;//特判
            convex.norm();//`原来得到的是顺时针的点,排序后逆时针`
        }
        //`得到凸包的另外一种方法`
        //`测试 LightOJ1203  LightOJ1239`
        void Graham(polygon &convex){
            norm();
            int &top = convex.n;
            top = 0;
            if(n == 1){
                top = 1;
                convex.p[0] = p[0];
                return;
            }
            if(n == 2){
                top = 2;
                convex.p[0] = p[0];
                convex.p[1] = p[1];
                if(convex.p[0] == convex.p[1])top--;
                return;
            }
            convex.p[0] = p[0];
            convex.p[1] = p[1];
            top = 2;
            for(int i = 2;i < n;i++){
                while( top > 1 && sgn((convex.p[top-1]-convex.p[top-2])^(p[i]-convex.p[top-2])) <= 0 )
                    top--;
                convex.p[top++] = p[i];
            }
            if(convex.n == 2 && (convex.p[0] == convex.p[1]))convex.n--;//特判
        }
        //`判断是不是凸的`
        bool isconvex(){
            bool s[2];
            memset(s,false,sizeof(s));
            for(int i = 0;i < n;i++){
                int j = (i+1)%n;
                int k = (j+1)%n;
                s[sgn((p[j]-p[i])^(p[k]-p[i]))+1] = true;
                if(s[0] && s[2])return false;
            }
            return true;
        }
        //`判断点和任意多边形的关系`
        //` 3 点上`
        //` 2 边上`
        //` 1 内部`
        //` 0 外部`
        int relationpoint(Point q){
            for(int i = 0;i < n;i++){
                if(p[i] == q)return 3;
            }
            getline();
            for(int i = 0;i < n;i++){
                if(l[i].pointonseg(q))return 2;
            }
            int cnt = 0;
            for(int i = 0;i < n;i++){
                int j = (i+1)%n;
                int k = sgn((q-p[j])^(p[i]-p[j]));
                int u = sgn(p[i].y-q.y);
                int v = sgn(p[j].y-q.y);
                if(k > 0 && u < 0 && v >= 0)cnt++;
                if(k < 0 && v < 0 && u >= 0)cnt--;
            }
            return cnt != 0;
        }
        //`直线u切割凸多边形左侧`
        //`注意直线方向`
        //`测试:HDU3982`
        void convexcut(Line u,polygon &po){
            int &top = po.n;//注意引用
            top = 0;
            for(int i = 0;i < n;i++){
                int d1 = sgn((u.e-u.s)^(p[i]-u.s));
                int d2 = sgn((u.e-u.s)^(p[(i+1)%n]-u.s));
                if(d1 >= 0)po.p[top++] = p[i];
                if(d1*d2 < 0)po.p[top++] = u.crosspoint(Line(p[i],p[(i+1)%n]));
            }
        }
        //`得到周长`
        //`测试 LightOJ1239`
        double getcircumference(){
            double sum = 0;
            for(int i = 0;i < n;i++){
                sum += p[i].distance(p[(i+1)%n]);
            }
            return sum;
        }
        //`得到面积`
        double getarea(){
            double sum = 0;
            for(int i = 0;i < n;i++){
                sum += (p[i]^p[(i+1)%n]);
            }
            return fabs(sum)/2;
        }
        //`得到方向`
        //` 1 表示逆时针,0表示顺时针`
        bool getdir(){
            double sum = 0;
            for(int i = 0;i < n;i++)
                sum += (p[i]^p[(i+1)%n]);
            if(sgn(sum) > 0)return 1;
            return 0;
        }
        //`得到重心`
        Point getbarycentre(){
            Point ret(0,0);
            double area = 0;
            for(int i = 1;i < n-1;i++){
                double tmp = (p[i]-p[0])^(p[i+1]-p[0]);
                if(sgn(tmp) == 0)continue;
                area += tmp;
                ret.x += (p[0].x+p[i].x+p[i+1].x)/3*tmp;
                ret.y += (p[0].y+p[i].y+p[i+1].y)/3*tmp;
            }
            if(sgn(area)) ret = ret/area;
            return ret;
        }
        //`多边形和圆交的面积`
        //`测试:POJ3675 HDU3982 HDU2892`
        double areacircle(circle c){
            double ans = 0;
            for(int i = 0;i < n;i++){
                int j = (i+1)%n;
                if(sgn( (p[j]-c.p)^(p[i]-c.p) ) >= 0)
                    ans += c.areatriangle(p[i],p[j]);
                else ans -= c.areatriangle(p[i],p[j]);
            }
            return fabs(ans);
        }
        //`多边形和圆关系`
        //` 2 圆完全在多边形内`
        //` 1 圆在多边形里面,碰到了多边形边界`
        //` 0 其它`
        int relationcircle(circle c){
            getline();
            int x = 2;
            if(relationpoint(c.p) != 1)return 0;//圆心不在内部
            for(int i = 0;i < n;i++){
                if(c.relationseg(l[i])==2)return 0;
                if(c.relationseg(l[i])==1)x = 1;
            }
            return x;
        }
    };
    //`AB X AC`
    double cross(Point A,Point B,Point C){
        return (B-A)^(C-A);
    }
    //`AB*AC`
    double dot(Point A,Point B,Point C){
        return (B-A)*(C-A);
    }
    //`最小矩形面积覆盖`
    //` A 必须是凸包(而且是逆时针顺序)`
    //` 测试 UVA 10173`
    double minRectangleCover(polygon A){
        //`要特判A.n < 3的情况`
        if(A.n < 3)return 0.0;
        A.p[A.n] = A.p[0];
        double ans = -1;
        int r = 1, p = 1, q;
        for(int i = 0;i < A.n;i++){
            //`卡出离边A.p[i] - A.p[i+1]最远的点`
            while( sgn( cross(A.p[i],A.p[i+1],A.p[r+1]) - cross(A.p[i],A.p[i+1],A.p[r]) ) >= 0 )
                r = (r+1)%A.n;
            //`卡出A.p[i] - A.p[i+1]方向上正向n最远的点`
            while(sgn( dot(A.p[i],A.p[i+1],A.p[p+1]) - dot(A.p[i],A.p[i+1],A.p[p]) ) >= 0 )
                p = (p+1)%A.n;
            if(i == 0)q = p;
            //`卡出A.p[i] - A.p[i+1]方向上负向最远的点`
            while(sgn(dot(A.p[i],A.p[i+1],A.p[q+1]) - dot(A.p[i],A.p[i+1],A.p[q])) <= 0)
                q = (q+1)%A.n;
            double d = (A.p[i] - A.p[i+1]).len2();
            double tmp = cross(A.p[i],A.p[i+1],A.p[r]) *
                (dot(A.p[i],A.p[i+1],A.p[p]) - dot(A.p[i],A.p[i+1],A.p[q]))/d;
            if(ans < 0 || ans > tmp)ans = tmp;
        }
        return ans;
    }
    
    //`直线切凸多边形`
    //`多边形是逆时针的,在q1q2的左侧`
    //`测试:HDU3982`
    vector<Point> convexCut(const vector<Point> &ps,Point q1,Point q2){
        vector<Point>qs;
        int n = ps.size();
        for(int i = 0;i < n;i++){
            Point p1 = ps[i], p2 = ps[(i+1)%n];
            int d1 = sgn((q2-q1)^(p1-q1)), d2 = sgn((q2-q1)^(p2-q1));
            if(d1 >= 0)
                qs.push_back(p1);
            if(d1 * d2 < 0)
                qs.push_back(Line(p1,p2).crosspoint(Line(q1,q2)));
        }
        return qs;
    }
    //`半平面交`
    //`测试 POJ3335 POJ1474 POJ1279`
    //***************************
    struct halfplane:public Line{
        double angle;
        halfplane(){}
        //`表示向量s->e逆时针(左侧)的半平面`
        halfplane(Point _s,Point _e){
            s = _s;
            e = _e;
        }
        halfplane(Line v){
            s = v.s;
            e = v.e;
        }
        void calcangle(){
            angle = atan2(e.y-s.y,e.x-s.x);
        }
        bool operator <(const halfplane &b)const{
            return angle < b.angle;
        }
    };
    struct halfplanes{
        int n;
        halfplane hp[maxp];
        Point p[maxp];
        int que[maxp];
        int st,ed;
        void push(halfplane tmp){
            hp[n++] = tmp;
        }
        //去重
        void unique(){
            int m = 1;
            for(int i = 1;i < n;i++){
                if(sgn(hp[i].angle-hp[i-1].angle) != 0)
                    hp[m++] = hp[i];
                else if(sgn( (hp[m-1].e-hp[m-1].s)^(hp[i].s-hp[m-1].s) ) > 0)
                    hp[m-1] = hp[i];
            }
            n = m;
        }
        bool halfplaneinsert(){
            for(int i = 0;i < n;i++)hp[i].calcangle();
            sort(hp,hp+n);
            unique();
            que[st=0] = 0;
            que[ed=1] = 1;
            p[1] = hp[0].crosspoint(hp[1]);
            for(int i = 2;i < n;i++){
                while(st<ed && sgn((hp[i].e-hp[i].s)^(p[ed]-hp[i].s))<0)ed--;
                while(st<ed && sgn((hp[i].e-hp[i].s)^(p[st+1]-hp[i].s))<0)st++;
                que[++ed] = i;
                if(hp[i].parallel(hp[que[ed-1]]))return false;
                p[ed]=hp[i].crosspoint(hp[que[ed-1]]);
            }
            while(st<ed && sgn((hp[que[st]].e-hp[que[st]].s)^(p[ed]-hp[que[st]].s))<0)ed--;
            while(st<ed && sgn((hp[que[ed]].e-hp[que[ed]].s)^(p[st+1]-hp[que[ed]].s))<0)st++;
            if(st+1>=ed)return false;
            return true;
        }
        //`得到最后半平面交得到的凸多边形`
        //`需要先调用halfplaneinsert() 且返回true`
        void getconvex(polygon &con){
            p[st] = hp[que[st]].crosspoint(hp[que[ed]]);
            con.n = ed-st+1;
            for(int j = st,i = 0;j <= ed;i++,j++)
                con.p[i] = p[j];
        }
    };
    //***************************
    
    const int maxn = 1010;
    struct circles{
        circle c[maxn];
        double ans[maxn];//`ans[i]表示被覆盖了i次的面积`
        double pre[maxn];
        int n;
        circles(){}
        void add(circle cc){
            c[n++] = cc;
        }
        //`x包含在y中`
        bool inner(circle x,circle y){
            if(x.relationcircle(y) != 1)return 0;
            return sgn(x.r-y.r)<=0?1:0;
        }
        //圆的面积并去掉内含的圆
        void init_or(){
            bool mark[maxn] = {0};
            int i,j,k=0;
            for(i = 0;i < n;i++){
                for(j = 0;j < n;j++)
                    if(i != j && !mark[j]){
                        if( (c[i]==c[j])||inner(c[i],c[j]) )break;
                    }
                if(j < n)mark[i] = 1;
            }
            for(i = 0;i < n;i++)
                if(!mark[i])
                    c[k++] = c[i];
            n = k;
        }
        //`圆的面积交去掉内含的圆`
        void init_add(){
            int i,j,k;
            bool mark[maxn] = {0};
            for(i = 0;i < n;i++){
                for(j = 0;j < n;j++)
                    if(i != j && !mark[j]){
                        if( (c[i]==c[j])||inner(c[j],c[i]) )break;
                    }
                if(j < n)mark[i] = 1;
            }
            for(i = 0;i < n;i++)
                if(!mark[i])
                    c[k++] = c[i];
            n = k;
        }
        //`半径为r的圆,弧度为th对应的弓形的面积`
        double areaarc(double th,double r){
            return 0.5*r*r*(th-sin(th));
        }
        //`测试SPOJVCIRCLES SPOJCIRUT`
        //`SPOJVCIRCLES求n个圆并的面积,需要加上init\_or()去掉重复圆(否则WA)`
        //`SPOJCIRUT 是求被覆盖k次的面积,不能加init\_or()`
        //`对于求覆盖多少次面积的问题,不能解决相同圆,而且不能init\_or()`
        //`求多圆面积并,需要init\_or,其中一个目的就是去掉相同圆`
        void getarea(){
            memset(ans,0,sizeof(ans));
            vector<pair<double,int> >v;
            for(int i = 0;i < n;i++){
                v.clear();
                v.push_back(make_pair(-pi,1));
                v.push_back(make_pair(pi,-1));
                for(int j = 0;j < n;j++)
                    if(i != j){
                        Point q = (c[j].p - c[i].p);
                        double ab = q.len(),ac = c[i].r, bc = c[j].r;
                        if(sgn(ab+ac-bc)<=0){
                            v.push_back(make_pair(-pi,1));
                            v.push_back(make_pair(pi,-1));
                            continue;
                        }
                        if(sgn(ab+bc-ac)<=0)continue;
                        if(sgn(ab-ac-bc)>0)continue;
                        double th = atan2(q.y,q.x), fai = acos((ac*ac+ab*ab-bc*bc)/(2.0*ac*ab));
                        double a0 = th-fai;
                        if(sgn(a0+pi)<0)a0+=2*pi;
                        double a1 = th+fai;
                        if(sgn(a1-pi)>0)a1-=2*pi;
                        if(sgn(a0-a1)>0){
                            v.push_back(make_pair(a0,1));
                            v.push_back(make_pair(pi,-1));
                            v.push_back(make_pair(-pi,1));
                            v.push_back(make_pair(a1,-1));
                        }
                        else{
                            v.push_back(make_pair(a0,1));
                            v.push_back(make_pair(a1,-1));
                        }
                    }
                sort(v.begin(),v.end());
                int cur = 0;
                for(int j = 0;j < v.size();j++){
                    if(cur && sgn(v[j].first-pre[cur])){
                        ans[cur] += areaarc(v[j].first-pre[cur],c[i].r);
                        ans[cur] += 0.5*(Point(c[i].p.x+c[i].r*cos(pre[cur]),c[i].p.y+c[i].r*sin(pre[cur]))^Point(c[i].p.x+c[i].r*cos(v[j].first),c[i].p.y+c[i].r*sin(v[j].first)));
                    }
                    cur += v[j].second;
                    pre[cur] = v[j].first;
                }
            }
            for(int i = 1;i < n;i++)
                ans[i] -= ans[i+1];
        }
    };
  • 相关阅读:
    微信小程序
    如何在微信小程序中使用骨架屏
    Nlog打印日志到Influxdb数据库
    C#通过模板导出Word的两种方法(超简单)
    VS2019制作的安装包,默认安装到C盘快捷方式无法打开
    orcale数据库还原备份
    Thread 类创建线程
    Quartz.NET
    DataTable ,使用详细。
    Unity3D 学习
  • 原文地址:https://www.cnblogs.com/King-of-Dark/p/13022770.html
Copyright © 2020-2023  润新知