• 凸包模板 水平序的Graham-Scan


    该算法的功能是:

    对n个无序的点p[]求凸包,结果在s[0~top-1]内。

    作为O(nlgn)的算法,已然到达其下界,实现也不复杂。

    分析详见黑书。

    模板题: http://poj.org/problem?id=1113

     1 #include<map>
     2 #include<set>
     3 #include<list>
     4 #include<cmath>
     5 #include<ctime>
     6 #include<queue>
     7 #include<stack>
     8 #include<cctype>
     9 #include<cstdio>
    10 #include<string>
    11 #include<vector>
    12 #include<cstdlib>
    13 #include<cstring>
    14 #include<iostream>
    15 #include<algorithm>
    16 #define MAXN 1005
    17 #define INF 0x3f3f3f3f
    18 #define LL long long
    19 #define DBL double
    20 #define eps 1e-6
    21 #define PI acos(-1.0)
    22 #define Test() cout<<"Test"<<endl;
    23 #define Debug(a) cout<<#a<<" = "<<a<<endl;
    24 #define Debug2(a,b) cout<<#a<<" = "<<a<<" , "<<#b<<" = "<<b<<endl;
    25 using namespace std;
    26 
    27 struct P{
    28     DBL x, y;
    29 };
    30 int n, L;
    31 P p[MAXN];
    32 
    33 bool cmp(P a, P b){
    34     return a.y<b.y || (a.y==b.y && a.x<b.x);
    35 }
    36 DBL mul(DBL t){
    37     return t*t;
    38 }
    39 DBL dis(P a, P b){
    40     return sqrt(mul(a.x-b.x)+mul(a.y-b.y));
    41 }
    42 int dblcmp(DBL x){
    43     return fabs(x)<eps? 0: x>0? 1: -1;
    44 }
    45 DBL cross(P a, P b, P c){        //ab X ac
    46     return (b.x-a.x)*(c.y-a.y) - (c.x-a.x)*(b.y-a.y);
    47 }
    48 DBL grahamScan(){                //水平序 
    49     sort(p, p+n, cmp);
    50     int top=-1, s[MAXN], tmp;
    51     s[++top]=0, s[++top]=1; 
    52     for(int i=2; i<n; i++){        // 做右链
    53         while(top>0 && dblcmp(cross(p[s[top-1]], p[s[top]], p[i])) <= 0) top --;
    54         s[++top] = i;
    55     }
    56     tmp = top;                    // 此时的栈顶元素一定是第n个点
    57     s[++top]=n-2;
    58     for(int i=n-3; i>=0; i--){    // 做左链
    59         while(top>tmp && dblcmp(cross(p[s[top-1]], p[s[top]], p[i])) <= 0) top --;
    60         s[++top] = i;
    61     }                            // 此时的栈顶元素一定是第1个点,即s[top]=s[0]
    62     // s[0~top-1]即为所求凸包 
    63     DBL res=0;
    64     for(int i=0; i<top; i++)
    65         res += dis(p[s[i]], p[s[i+1]]);
    66     return res+2*PI*L;
    67 }
    68 
    69 int main(){
    70     while(cin >> n >> L){
    71         for(int i=0; i<n; i++)
    72             scanf("%lf%lf", &p[i].x, &p[i].y);
    73         printf("%d
    ", (int)(grahamScan()+0.5));      //+0.5      
    74     }
    75     return 0;
    76 } 
    View Code
  • 相关阅读:
    spring MVC fromeWork 與webwork2 mvc 比較
    JAVA Oauth 认证服务器的搭建
    HTTPS的工作原理
    理解HTTP幂等性
    支付交易一般性准则
    设计模式六大原则
    腾讯微信技术总监周颢:一亿用户增长背后的架构秘密
    Valid Parentheses
    4Sum
    Letter Combinations of a Phone Number
  • 原文地址:https://www.cnblogs.com/KimKyeYu/p/3544893.html
Copyright © 2020-2023  润新知