• Python第三方库之openpyxl(11)


    Python第三方库之openpyxl(11)

    Stock Charts(股票图)

    在工作表上按特定顺序排列的列或行中的数据可以在股票图表中绘制。正如其名称所暗示的,股票图表通常被用来说明股价的波动。然而,这张图表也可以用于科学数据。例如,你可以用一个股票图表来表示每日或每年的温度波动。您必须按照正确的顺序组织您的数据,以创建股票图表。

    在工作表中组织股票图表数据是非常重要的。例如,为了创建一个简单的高低收盘价的股票图表,您应该按照这个顺序将您的数据以高、低和接近的形式排列为列标题。

    尽管股票图表是一种独特的类型,但各种类型只是特定格式选项的快捷方式:

    1.high-low-close本质上是一个没有线条的折线图,并且标记为XYZ。它也会使hiLoLines设置为True

    2.open-high-low-close是一个高低近距离的图表,每个数据点的标记都是XZZ和updownline。

    可以通过将股票图表与卷的条形图相结合来增加卷。

    from datetime import date
    
    from openpyxl import Workbook
    
    from openpyxl.chart import (
        BarChart,
        StockChart,
        Reference,
        Series,
    )
    from openpyxl.chart.axis import DateAxis, ChartLines
    from openpyxl.chart.updown_bars import UpDownBars
    
    wb = Workbook()
    ws = wb.active
    
    rows = [
       ['Date',      'Volume','Open', 'High', 'Low', 'Close'],
       ['2015-01-01', 20000,    26.2, 27.20, 23.49, 25.45,  ],
       ['2015-01-02', 10000,    25.45, 25.03, 19.55, 23.05, ],
       ['2015-01-03', 15000,    23.05, 24.46, 20.03, 22.42, ],
       ['2015-01-04', 2000,     22.42, 23.97, 20.07, 21.90, ],
       ['2015-01-05', 12000,    21.9, 23.65, 19.50, 21.51,  ],
    ]
    
    for row in rows:
        ws.append(row)
    
    # High-low-close
    c1 = StockChart()
    labels = Reference(ws, min_col=1, min_row=2, max_row=6)
    data = Reference(ws, min_col=4, max_col=6, min_row=1, max_row=6)
    c1.add_data(data, titles_from_data=True)
    c1.set_categories(labels)
    for s in c1.series:
        s.graphicalProperties.line.noFill = True
    # marker for close
    s.marker.symbol = "dot"
    s.marker.size = 5
    c1.title = "High-low-close"
    c1.hiLowLines = ChartLines()
    
    # Excel is broken and needs a cache of values in order to display hiLoLines :-/
    from openpyxl.chart.data_source import NumData, NumVal
    pts = [NumVal(idx=i) for i in range(len(data) - 1)]
    cache = NumData(pt=pts)
    c1.series[-1].val.numRef.numCache = cache
    
    ws.add_chart(c1, "A10")
    
    # Open-high-low-close
    c2 = StockChart()
    data = Reference(ws, min_col=3, max_col=6, min_row=1, max_row=6)
    c2.add_data(data, titles_from_data=True)
    c2.set_categories(labels)
    for s in c2.series:
        s.graphicalProperties.line.noFill = True
    c2.hiLowLines = ChartLines()
    c2.upDownBars = UpDownBars()
    c2.title = "Open-high-low-close"
    
    # add dummy cache
    c2.series[-1].val.numRef.numCache = cache
    
    ws.add_chart(c2, "G10")
    
    # Create bar chart for volume
    
    bar = BarChart()
    data =  Reference(ws, min_col=2, min_row=1, max_row=6)
    bar.add_data(data, titles_from_data=True)
    bar.set_categories(labels)
    
    from copy import deepcopy
    
    # Volume-high-low-close
    b1 = deepcopy(bar)
    c3 = deepcopy(c1)
    c3.y_axis.majorGridlines = None
    c3.y_axis.title = "Price"
    b1.y_axis.axId = 20
    b1.z_axis = c3.y_axis
    b1.y_axis.crosses = "max"
    b1 += c3
    
    c3.title = "High low close volume"
    
    ws.add_chart(b1, "A27")
    
    ## Volume-open-high-low-close
    b2 = deepcopy(bar)
    c4 = deepcopy(c2)
    c4.y_axis.majorGridlines = None
    c4.y_axis.title = "Price"
    b2.y_axis.axId = 20
    b2.z_axis = c4.y_axis
    b2.y_axis.crosses = "max"
    b2 += c4
    
    ws.add_chart(b2, "G27")
    
    wb.save("stock.xlsx")
    View Code

    注意:由于Excel high-low lines的缺陷,只有在至少一个数据系列有一些虚拟值时才会显示出来。这可以通过以下的攻击来完成:

    from openpyxl.chart.data_source import NumData, NumVal
    pts = [NumVal(idx=i) for i in range(len(data) - 1)]
    cache = NumData(pt=pts)
    c1.series[-1].val.numRef.numCache = cache

    运行结果

  • 相关阅读:
    php 元字符与转义
    php内置函数
    php系统常量
    WPF 批量修改控件属性
    对实体属性值赋值(DATASET转list)
    WPF 进度条实现
    WPF 异步刷新主界面
    c# 依赖注入Export ImportMany
    Oracle 正则匹配实现字符拆分
    Oracle 获取表对应列信息和索引信息
  • 原文地址:https://www.cnblogs.com/Keys819/p/9315632.html
Copyright © 2020-2023  润新知