• 2020牛客多校训练1 H Minimumcost Flow(费用流)


    题目链接https://ac.nowcoder.com/acm/contest/5666/H

    题意:给你一个n个点m条边的图,q次询问每次给出u和v,每条边的容量都为u/v, 初始流量为1,询问满流时候的最小费用。

    首先将每条边的容量设为1跑一遍费用流 。那么对于某次询问容量变为u/v,只要将起始流量设为v,每条边容量设为u之后得到的答案再除回v即可。

    而如何实现上述操作,只要先预处理出容量为1时每次求增广路所需要的花费,然后优先选花费最小的v/u(向上整除)条增广路,如果v%u!=0,

    那么最后一条增广路上的容量应该是v%u而不是u。这样子q次询问的答案,全部可以通过一开始容量为1的费用流得出的结果线性表示。具体实现见代码。

    #include<bits/stdc++.h>
    #define ll long long
    #define PB push_back
    #define endl '\n'
    #define INF 0x3f3f3f3f
    #define LINF 0x3f3f3f3f3f3f3f3f
    #define ull unsigned long long
    #define lson rt << 1, l, mid
    #define rson rt << 1 | 1, mid + 1, r
    #define lowbit(x) (x & (-x))
    #define rep(i, a, b) for(int i = a ; i <= b ; ++ i)
    #define per(i, a, b) for(int i = b ; i >= a ; -- i)
    #define clr(a, b) memset(a, b, sizeof(a))
    #define in insert
    #define random(x) (rand()%x)
    #define PII(x, y) make_pair(x, y)
    #define fi first
    #define se second
    #define pi acos(-1)
    using namespace std;
    const int maxn = 2e6 + 1000;
    const ll mod = 998244353;
    const int M = 100 + 10;
    const int N = 50 + 10;
    int n, m, s, t, cnt;
    int head[N], vis[N], inq[N], cur[N];
    ll dis[N], sum[M<<1];
    ll maxflow, cost;
    vector<ll> path;
    struct node{
        int to, next;
        ll cost, flow;
    }edge[M<<1];
    void add(int u, int v, int cost, int flow){
        edge[cnt].to = v;
        edge[cnt].cost = cost;
        edge[cnt].flow = flow;
        edge[cnt].next = head[u];
        head[u] = cnt ++;
    }
    bool spfa(){
        rep(i, 1, n) dis[i] = 1e18, inq[i] = 0, cur[i] = head[i];
        queue<int> que; dis[s] = 0;
        inq[s] = 1; que.push(s);
        while(!que.empty()){
            int u = que.front();
            que.pop();
            inq[u] = 0;
            for(int i = head[u] ; ~ i ; i = edge[i].next){
                int v = edge[i].to;
                if(dis[v] > dis[u] + edge[i].cost && edge[i].flow){
                    dis[v] = dis[u] + edge[i].cost;
                    if(!inq[v]){
                        inq[v] = 1;
                        que.push(v);
                    }
                }
            }
        }
        return dis[t] == 1e18 ? 0 : 1;
    }
    ll dfs(int u, ll flow){
        if(u == t){
            vis[t] = 1;
            maxflow += flow;
            return flow;
        }
        ll used = 0;
        vis[u] = 1;
        for(int i = cur[u] ; ~ i ; i = edge[i].next){
            int v = edge[i].to;
            cur[u] = i;
            if((v == t || !vis[v]) && edge[i].flow && dis[v] == dis[u] + edge[i].cost){
                ll minflow = dfs(v, min(flow - used, edge[i].flow));
                if(minflow){
                    cost += minflow * edge[i].cost;
                    edge[i].flow -= minflow;
                    edge[i^1].flow += minflow;
                    used += minflow;
                }
                if(used == flow) break;
            }
        }
        return used;
    }
    void dinic(){
        while(spfa()){
            vis[t] = 1;
            path.PB(dis[t]);
            while(vis[t]){
                clr(vis, 0);
                dfs(s, 1e18);
            }
        }
    }
    signed main(){
        ll u, v, w; int q;
        while(~scanf("%d %d", &n, &m)){
            clr(head, -1); clr(vis, 0);
            path.clear(); maxflow = cost = 0;
            s = 1; t = n; cnt = 0;
            while(m --){
                scanf("%lld %lld %lld", &u, &v, &w);
                add(u, v, w, 1);
                add(v, u, -w, 0);
            }
            scanf("%d", &q);
            dinic();
            ll sz = path.size();
            rep(i, 0, sz-1) sum[i+1] = sum[i] + path[i];
            while(q --){
                scanf("%lld %lld", &u, &v);
                if(sz * u < v) {puts("NaN"); continue;}
                ll x = v / u, y = v % u;
                ll ans = sum[x] * u + path[x] * y;
                ll tmp = __gcd(ans, v);
                cout << ans / tmp << '/' << v / tmp << endl;
            }
        }
        return 0;
    }
    View Code
  • 相关阅读:
    python中namedtuple介绍
    导入mysql数据的时候提示Field * doesn't have a default value解决方法
    Django中多表查询思路
    使用questionsModel.values()后不能获取模型中的属性对应的外键属性值的解决方式
    使用django UWSGI 出现 Bad Request (400)
    reverse函数实现指定页面跳转
    Model中内部类meta详解
    models中的pk主键用法
    binlog的几种复制形式
    Mysqldump参数大全(参数来源于mysql5.5.19源码)
  • 原文地址:https://www.cnblogs.com/Ketchum/p/13294193.html
Copyright © 2020-2023  润新知