• CodeForces 1344D Résumé Review


    题意

    给定一个长度为 (n) 的序列 (a) 和一个整数 (k),构造一个序列 (b) 使得满足以下条件:

    • (0leq b_ileq a_i)

    • (sumlimits_{i=1}^{n}b_i=k)

    最大化 (sumlimits_{i=1}^{n}a_ib_i-b_i^3)

    ( exttt{Data Range:}nleq 10^5,kleq 10^{14})

    题解

    神仙题。

    考虑先设 (b_i)(0),相当于能操作 (k) 次,每次能把某个 (b_i+1)

    考虑设 (f(i,x)=a_ix-x^3),那么我们有

    [Delta f(i,x)=a_i-3x^2+3x-1 ]

    注意到这东西在整数域上是单调递减的,于是可以按照求最大函数值的那个套路来,但是时间复杂度是 (O(klog n)) 的,无法通过。

    注意到我们取出来的最大函数值值是单调不升的,所以可以考虑二分一下最后一次操作对答案的贡献是什么。对于当前考虑的值我们可以通过二分来解一下某个 (i) 至少需要操作几次才能大于等于这个最大增量,最后 check 一下 (sum b_i) 就好了。

    然后由于最大函数值单调不升而不是单调递减,所以外面的二分最好不要二分到一个确切的值,而是二分到一个长度为 (2) 的区间,然后在 check 两个端点。

    这样子可能有些时候操作次数还有剩余,于是就可以最后调整一下值就差不多了。

    代码

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long int ll;
    const ll MAXN=2e5+51,inf=1e18;
    ll n,kk,l,r,mid,sm;
    ll u[MAXN],v[MAXN];
    inline ll read()
    {
        register ll num=0,neg=1;
        register char ch=getchar();
        while(!isdigit(ch)&&ch!='-')
        {
            ch=getchar();
        }
        if(ch=='-')
        {
            neg=-1;
            ch=getchar();
        }
        while(isdigit(ch))
        {
            num=(num<<3)+(num<<1)+(ch-'0');
            ch=getchar();
        }
        return num*neg;
    }
    inline ll f(ll u,ll x)
    {
        return u==x?inf:u-3*x*x+3*x-1;
    }
    inline ll calc(ll x,ll lim)
    {
        ll l=1,r=u[x],mid,res=u[x];
        while(l<=r)
        {
            mid=(l+r)>>1;
            f(u[x],mid)<=lim?r=mid-1,res=mid:l=mid+1;
        }
        return res;
    }
    inline ll check(ll mid)
    {
        sm=0;
        for(register int i=1;i<=n;i++)
        {
            sm+=(v[i]=calc(i,mid));
        }
        return sm<kk;
    }
    int main()
    {
        n=read(),kk=read();
        for(register int i=1;i<=n;i++)
        {
            u[i]=read(),l=min(l,f(u[i],u[i]-1)),r=max(r,f(u[i],0));
        }
        while(r-l>=2)
        {
            mid=(l+r)>>1;
            check(mid)?r=mid:l=mid;
        }
        r=check(l)?l:r,check(r),kk-=sm;
        for(register int i=1;i<=n;i++)
        {
            kk&&v[i]<u[i]&&f(u[i],v[i])==r?v[i]++,kk--:1;
        }
        for(register int i=1;i<=n;i++)
        {
            printf("%lld ",v[i]);
        }
    }
    
  • 相关阅读:
    基于vue-cli 引入iview ui
    微信小程序之swiper
    使用Python玩转WMI
    Python内存数据库/引擎
    Windows安装包制作指南——Advanced Installer的使用
    Windows 2003上 SaltStack/Salt 和 psutil 可能存在的问题及解决
    Unity Shader——Writing Surface Shaders(3)——Surface Shader Lighting Examples
    Unity Shader——Writing Surface Shaders(2)——Custom Lighting models in Surface Shaders
    Unity Shader——Writing Surface Shaders(1)——Surface Shader Examples
    Unity Shader——Writing Surface Shaders(0)
  • 原文地址:https://www.cnblogs.com/Karry5307/p/13731799.html
Copyright © 2020-2023  润新知