题目链接:https://codeforces.com/contest/1427/problem/B
题意
给出一个长为 (n) 由 W, L 组成的字符串,如果一个 W 左侧为 W,则它提供 2 分,否则为 1 分。最多可以将 (k) 个 L 变为 W,问字符串可以得到的最大分值。
题解
本题的关键是字符串中 W 的有无及两两构成的封闭区间长度。
- 如果全为 L,则字符串的最大分值为 (max(2k-1, 0)) 。
- 如果存在 W,则每次操作都会至少增加 2 分,如果操作的为两个 W 区间内的最后一个 L,则会额外再增加 1 分。
所以计算字符串的初始分值,加上 (2 imes min(k, cntL)) 分,然后区间长度排序,每当可以减去一个完整区间长就再加上 1 分。
代码
#include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int t;
cin >> t;
while (t--) {
int n, k;
cin >> n >> k;
string s;
cin >> s;
int cntL = count(s.begin(), s.end(), 'L');
if (cntL == n) {
cout << max(2 * k - 1, 0) << "
";
continue;
}
vector<int> posW;
for (int i = 0; i < n; i++)
if (s[i] == 'W') posW.push_back(i);
vector<int> seg;
for (int i = 1; i < int(posW.size()); i++)
if (posW[i] - posW[i - 1] - 1 > 0) seg.push_back(posW[i] - posW[i - 1] - 1);
int ans = s[0] == 'W';
for (int i = 1; i < n; i++)
if (s[i] == 'W') ans += s[i - 1] == 'W' ? 2 : 1;
ans += 2 * min(k, cntL);
sort(seg.begin(), seg.end());
for (auto len : seg) if (k >= len) k -= len, ans += 1;
cout << ans << "
";
}
return 0;
}