多层感知机的基本知识
深度学习主要关注多层模型。在这里,我们将以多层感知机(multilayer perceptron,MLP)为例,介绍多层神经网络的概念。
隐藏层
下图展示了一个多层感知机的神经网络图,它含有一个隐藏层,该层中有5个隐藏单元。
表达公式
具体来说,给定一个小批量样本(oldsymbol{X} in mathbb{R}^{n imes d}),其批量大小为(n),输入个数为(d)。假设多层感知机只有一个隐藏层,其中隐藏单元个数为(h)。记隐藏层的输出(也称为隐藏层变量或隐藏变量)为(oldsymbol{H}),有(oldsymbol{H} in mathbb{R}^{n imes h})。因为隐藏层和输出层均是全连接层,可以设隐藏层的权重参数和偏差参数分别为(oldsymbol{W}_h in mathbb{R}^{d imes h})和 (oldsymbol{b}_h in mathbb{R}^{1 imes h}),输出层的权重和偏差参数分别为(oldsymbol{W}_o in mathbb{R}^{h imes q})和(oldsymbol{b}_o in mathbb{R}^{1 imes q})。
我们先来看一种含单隐藏层的多层感知机的设计。其输出(oldsymbol{O} in mathbb{R}^{n imes q})的计算为
也就是将隐藏层的输出直接作为输出层的输入。如果将以上两个式子联立起来,可以得到
从联立后的式子可以看出,虽然神经网络引入了隐藏层,却依然等价于一个单层神经网络:其中输出层权重参数为(oldsymbol{W}_holdsymbol{W}_o),偏差参数为(oldsymbol{b}_h oldsymbol{W}_o + oldsymbol{b}_o)。不难发现,即便再添加更多的隐藏层,以上设计依然只能与仅含输出层的单层神经网络等价。
激活函数
上述问题的根源在于全连接层只是对数据做仿射变换(affine transformation),而多个仿射变换的叠加仍然是一个仿射变换。解决问题的一个方法是引入非线性变换,例如对隐藏变量使用按元素运算的非线性函数进行变换,然后再作为下一个全连接层的输入。这个非线性函数被称为激活函数(activation function)。
下面我们介绍几个常用的激活函数:
ReLU函数
ReLU(rectified linear unit)函数提供了一个很简单的非线性变换。给定元素(x),该函数定义为
可以看出,ReLU函数只保留正数元素,并将负数元素清零。为了直观地观察这一非线性变换,我们先定义一个绘图函数xyplot。
%matplotlib inline
import torch
import numpy as np
import matplotlib.pyplot as plt
import sys
sys.path.append("/home/kesci/input")
import d2lzh1981 as d2l
def xyplot(x_vals, y_vals, name):
# d2l.set_figsize(figsize=(5, 2.5))
plt.plot(x_vals.detach().numpy(), y_vals.detach().numpy())
plt.xlabel('x')
plt.ylabel(name + '(x)')
x = torch.arange(-8.0, 8.0, 0.1, >requires_grad=True) y = x.relu() xyplot(x, y, 'relu')
我们来看一下ReLU函数的梯度:
y.sum().backward() xyplot(x, x.grad, 'grad of relu')
Sigmoid函数
sigmoid函数可以将元素的值变换到0和1之间:
y = x.sigmoid() xyplot(x, y, 'sigmoid')
依据链式法则,sigmoid函数的导数
下面绘制了sigmoid函数的导数。当输入为0时,sigmoid函数的导数达到最大值0.25;当输入越偏离0时,sigmoid函数的导数越接近0。
x.grad.zero_() y.sum().backward() xyplot(x, x.grad, 'grad of sigmoid')
tanh函数
tanh(双曲正切)函数可以将元素的值变换到-1和1之间:
我们接着绘制tanh函数。当输入接近0时,tanh函数接近线性变换。虽然该函数的形状和sigmoid函数的形状很像,但tanh函数在坐标系的原点上对称。
y = x.tanh() xyplot(x, y, 'tanh')
依据链式法则,tanh函数的导数
下面绘制了tanh函数的导数。当输入为0时,tanh函数的导数达到最大值1;当输入越偏离0时,tanh函数的导数越接近0。
x.grad.zero_() y.sum().backward() xyplot(x, x.grad, 'grad of tanh')
关于激活函数的选择
-
ReLu函数是一个通用的激活函数,目前在大多数情况下使用。但是,ReLU函数只能在隐藏层中使用。
-
用于分类器时,sigmoid函数及其组合通常效果更好。由于梯度消失问题,有时要避免使用sigmoid和tanh函数。
-
在神经网络层数较多的时候,最好使用ReLu函数,ReLu函数比较简单计算量少,而sigmoid和tanh函数计算量大很多。
-
在选择激活函数的时候可以先选用ReLu函数如果效果不理想可以尝试其他激活函数。
多层感知机
多层感知机就是含有至少一个隐藏层的由全连接层组成的神经网络,且每个隐藏层的输出通过激活函数进行变换。多层感知机的层数和各隐藏层中隐藏单元个数都是超参数。以单隐藏层为例并沿用本节之前定义的符号,多层感知机按以下方式计算输出:
其中(phi)表示激活函数。
多层感知机从零开始的实现
import torch
import numpy as np
import sys
sys.path.append("/home/kesci/input")
import d2lzh1981 as d2l
获取训练集
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size,root='/home/kesci/input/FashionMNIST2065')
定义模型参数
num_inputs, num_outputs, num_hiddens = 784, 10, 256
W1 = torch.tensor(np.random.normal(0, 0.01, (num_inputs, num_hiddens)), dtype=torch.float)
b1 = torch.zeros(num_hiddens, dtype=torch.float)
W2 = torch.tensor(np.random.normal(0, 0.01, (num_hiddens, num_outputs)), dtype=torch.float)
b2 = torch.zeros(num_outputs, dtype=torch.float)
params = [W1, b1, W2, b2]
for param in params:
param.requires_grad_(requires_grad=True)
定义激活函数
def relu(X):
return torch.max(input=X, other=torch.tensor(0.0))
定义网络
def net(X):
X = X.view((-1, num_inputs))
H = relu(torch.matmul(X, W1) + b1)
return torch.matmul(H, W2) + b2
定义损失函数
loss = torch.nn.CrossEntropyLoss()
训练
d2l.train_ch3()函数实现见上一节
num_epochs, lr = 5, 100.0
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, params, lr)
多层感知机pytorch实现
import torch
from torch import nn
from torch.nn import init
import numpy as np
import sys
sys.path.append("/home/kesci/input")
import d2lzh1981 as d2l
初始化模型和各个参数
num_inputs, num_outputs, num_hiddens = 784, 10, 256
net = nn.Sequential(
d2l.FlattenLayer(),
nn.Linear(num_inputs, num_hiddens),
nn.ReLU(),
nn.Linear(num_hiddens, num_outputs),
)
for params in net.parameters():
init.normal_(params, mean=0, std=0.01)
训练
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size,root='/home/kesci/input/FashionMNIST2065')
loss = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(net.parameters(), lr=0.5)
num_epochs = 5
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, None, None, optimizer)