发现好多人的做法并不对......
【分析】
先化简一波式子:
(quad Ans)
(displaystyle =sum_{i=1}^{N!}[gcd(i, M!)=1])
(displaystyle =sum_{i=1}^{N!}sum_{dmid iwedge dmid (M!)}oldsymbol mu(d))
(displaystyle =sum_{dmid (M!)}oldsymbol mu(d)sum_{i=1}^{N!}[dmid i])
由于 (Mleq N) 故 ((M!)mid (N!)) 有 (dmid (N!))
( herefore Ans)
(displaystyle =sum_{dmid (M!)}oldsymbol mu(d){N!over d})
(displaystyle ={N!over M!}sum_{dmid (M!)}oldsymbol mu(d){M!over d})
(displaystyle ={N!over M!}(oldsymbol mu*oldsymbol {id})(M!))
(displaystyle ={N!over M!}oldsymbol varphi(M!))
(displaystyle ={N!over M!}cdot M!cdot prod_{pmid (M!)}{p-1over p})
(displaystyle =N!prod_{pleq M}{p-1over p})
答案要求对 (R) 取模,但并没有表明 (R) 是否严格大于 (M)
故类似于 exLucas 的想法:设 (f_R(n)) 表示 (n) 去除 (R) 质因子后,剩余质因子的乘积;(g_R(n)) 表示 (n) 中 (R) 质因子的次数
故 (displaystyle n=f_R(n)cdot R^{displaystyle g_R(n)})
代入所求式子得:(displaystyle Ans={f_R(N!)cdot f_R(prod_{pleq M}(p-1))over f_R(prod_{pleq M}p)}cdot R^{displaystyle g_R(N!)+g_R(prod_{pleq M}(p-1))-g_R(prod_{pleq M}p)})
当 (displaystyle g_R(N!)+g_R(prod_{pleq M}(p-1))-g_R(prod_{pleq M}p)>0) 时,(Ansequiv 0pmod R)
当 (displaystyle g_R(N!)+g_R(prod_{pleq M}(p-1))-g_R(prod_{pleq M}p)=0) 时,(displaystyle Ansequiv f_R(N!)cdot f_R(prod_{pleq M}(p-1)) cdot f_R^{-1}(prod_{pleq M}p)pmod R)
现考虑如何线性求解三个数字的 (f_R) 和 (g_R)
对于 (N!) 有 (egin{cases} f_R(N!)equiv f_R((N-1)!)cdot f_R(N)pmod R \ g_R(N!)equiv g_R((N-1)!)+g_R(N)pmod R end{cases})
其中,(f_R(N)) 和 (g_R(N)) 可以通过对 (N) 暴力拆解得到,复杂度为 (T(N)=O(N)+O(N)+O({Nover R})+O({Nover R^2})+O({Nover R^3})+cdots =O(N)+O({Nover 1-{1over R}})=O(N))
对于 (displaystyle prod_{pleq M} p) 有 (egin{cases} egin{cases} displaystyle f_R(prod_{pleq M}p)equiv f_R(prod_{pleq M-1}p)pmod R \ displaystyle g_R(prod_{pleq M}p)equiv g_R(prod_{pleq M-1}p)pmod R end{cases}, M otin Prime \ \ egin{cases} displaystyle f_R(prod_{pleq M}p)equiv f_R(prod_{pleq M-1}p)cdot M^{[M eq R]}pmod R \ displaystyle g_R(prod_{pleq M}p)equiv g_R(prod_{pleq M-1}p)+[M=R]pmod R end{cases}, Min Prime end{cases})
复杂度为 (O(N))
对于 (displaystyle prod_{pleq M}(p-1)) 有 (egin{cases} egin{cases} displaystyle f_R(prod_{pleq M}(p-1))equiv f_R(prod_{pleq M-1}(p-1))pmod R \ displaystyle g_R(prod_{pleq M}(p-1))equiv g_R(prod_{pleq M-1}(p-1))pmod R end{cases}, M otin Prime \ \ egin{cases} displaystyle f_R(prod_{pleq M}(p-1))equiv f_R(prod_{pleq M-1}(p-1))cdot f_R(M-1)pmod R \ displaystyle g_R(prod_{pleq M}(p-1))equiv g_R(prod_{pleq M-1}(p-1))+g_R(M-1)pmod R end{cases}, Min Prime end{cases})
对于 (f_R(M-1)) 与 (g_R(M-1)) 同样是暴力拆解,复杂度不大于 (f_R(N!)) 和 (g_R(N!)) 的求解,故也是 (O(N)) 的
因此预处理总复杂度为 (O(N)+O(N)+O(N)=O(N))
【代码】
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN=1e7+10;
int R, prime[MAXN], cntprime, frac[MAXN], cntR[MAXN], prodP[MAXN], cntRP[MAXN], prodP1[MAXN], cntRP1[MAXN];
bool nprime[MAXN];
inline ll fpow(ll a,ll x) { ll ans=1; for(;x;x>>=1,a=a*a%R) if(x&1) ans=ans*a%R; return ans; }
inline int ans(int N, int M){
if( cntR[N]+cntRP1[M]-cntRP[M] ) return 0;
return (ll)frac[N]*prodP1[M]%R*fpow(prodP[M], R-2)%R;
}
inline void pre(){
frac[0]=frac[1]=1;
prodP[1]=prodP1[1]=1;
for(int i=2;i<=1e7;++i){
if(!nprime[i]) prime[++cntprime]=i;
for(int j=1;j<=cntprime;++j)
if((ll)prime[j]*i>1e7) break;
else{
nprime[prime[j]*i]=1;
if(i%prime[j]==0) break;
}
cntR[i]=cntR[i-1];
int Val=i;
while(Val%R==0) ++cntR[i], Val/=R;
frac[i]=(ll)frac[i-1]*Val%R;
prodP[i]=prodP[i-1];
cntRP[i]=cntRP[i-1];
prodP1[i]=prodP1[i-1];
cntRP1[i]=cntRP1[i-1];
if(prime[cntprime]!=i) continue;
if(i==R) ++cntRP[i];
else prodP[i]=(ll)prodP[i]*i%R;
Val=i-1;
while(Val%R==0) ++cntRP1[i], Val/=R;
prodP1[i]=(ll)prodP1[i]*Val%R;
}
}
int main(){
ios::sync_with_stdio(0);
cin.tie(0); cout.tie(0);
int T, N, M; cin>>T>>R;
pre();
while(T--&&cin>>N>>M) cout<<ans(N, M)<<"
";
cout.flush();
return 0;
}