• Spark RDD 分区之HashPartitioner


    Spark RDD 分区

    Spark RDD分区是并行计算的一个计算单元,RDD在逻辑上被分为多个分区,分区的格式决定了并行计算的粒度,任务的个数是是由最后一个RDD的
    的分区数决定的。
    Spark自带两中分区:HashPartitioner RangerPartitioner。一般而言初始数据是没有分区的,数据分区只作用于key value这样的RDD上,
    当一个Job包含Shuffle操作类型的算子时,如groupByKey,reduceByKey等,就会使用数据分区的方式进行分区,即确定key放在哪一个分区。

    shuffle与Partition关系

    摘自[Spark分区方式详解](https://blog.csdn.net/dmy1115143060/article/details/82620715)

    在Spark Shuffle阶段中,共分为Shuffle Write阶段和Shuffle Read阶段,其中在Shuffle Write阶段中,Shuffle Map Task对数据进行处理产生中间数据,然后再根据数据分区方式对中间数据进行分区。最终Shffle Read阶段中的Shuffle Read Task会拉取Shuffle Write阶段中产生的并已经分好区的中间数据。图2中描述了Shuffle阶段与Partition关系。下面则分别介绍Spark中存在的两种数据分区方式。
    

    HashPartitioner

    HashPartitioner采用哈希方式对kay进行分区,分区规则为 partitionId = Key.hashCode % numPartitions,其中partitionId代表该Key对应的键值对数据应当分配到的Partition标识,Key.hashCode表示该Key的哈希值,numPartitions表示包含的Partition个数。

    RDD 分区例子

    package com.learn.hadoop.spark.doc.analysis.chpater.rdd;
    
    import org.apache.spark.HashPartitioner;
    import org.apache.spark.SparkConf;
    import org.apache.spark.api.java.JavaPairRDD;
    import org.apache.spark.api.java.JavaRDD;
    import org.apache.spark.api.java.JavaSparkContext;
    import org.apache.spark.api.java.function.FlatMapFunction;
    import org.apache.spark.api.java.function.Function2;
    import org.apache.spark.api.java.function.PairFunction;
    import org.apache.spark.api.java.function.VoidFunction;
    import scala.Tuple2;
    
    import java.util.Arrays;
    import java.util.Iterator;
    
    /**
     * RDD分区
     *HashPartitioner
     */
    public class RddTest05 {
        public static void main(String[] args) {
            SparkConf sparkConf =new SparkConf().setMaster("local[*]").setAppName("RddTest05");
            JavaSparkContext sc =new JavaSparkContext(sparkConf);
            JavaRDD<String> rdd =sc.parallelize(Arrays.asList("hello spark world ","hello java world","hello python world"));
    
            //设置当前分区数与cpu core有关
            System.out.println("local partitions:");
            System.out.println("rdd partitions num "+rdd.getNumPartitions());
            System.out.println("rdd partitioner :"+rdd.partitioner().toString());
    
            JavaRDD<String> words = rdd.flatMap(new FlatMapFunction<String, String>() {
                @Override
                public Iterator<String> call(String s) throws Exception {
                    return Arrays.asList(s.split(" ")).iterator();
                }
            });
    
    
            //输出所有的word
            System.out.println("console all word");
            words.foreach(s -> System.out.println(s));
    
            JavaPairRDD<String,Integer> wordPairs = words.mapToPair(new PairFunction<String, String, Integer>() {
                @Override
                public Tuple2<String, Integer> call(String s) throws Exception {
                    return new Tuple2<>(s,1);
                }
            });
            //输出所有的对pairRDD
            System.out.println("console all pair");
            //wordPairs.foreach(stringIntegerTuple2 -> System.out.println(stringIntegerTuple2));
            wordPairs.foreach(new VoidFunction<Tuple2<String, Integer>>() {
                @Override
                public void call(Tuple2<String, Integer> stringIntegerTuple2) throws Exception {
                    System.out.println(stringIntegerTuple2);
                }
            });
            System.out.println("wordPairs partitioner :"+wordPairs.partitioner().toString());
    
            //归纳redues
            JavaPairRDD<String,Integer> wordredues = wordPairs.reduceByKey(new Function2<Integer, Integer, Integer>() {
                @Override
                public Integer call(Integer integer, Integer integer2) throws Exception {
                    return integer+integer2;
                }
            });
            //reduceByKey默认的分区器就是HashPartitioner
            System.out.println("wordredues partitioner num: "+wordredues.getNumPartitions());
            System.out.println("wordredues partitioner :"+wordredues.partitioner().toString());
    
            //输出字符统计
            System.out.println("console all");
            wordredues.foreach(stringIntegerTuple2 -> System.out.println(stringIntegerTuple2));
    
            //测试默认排序,默认是ascending(上升)true,如果sortByKey参数是false则是降序
            System.out.println("test sort:");
            wordredues=wordredues.sortByKey(true);
            wordredues.foreach(stringIntegerTuple2 -> System.out.println(stringIntegerTuple2));
            //sorkByKey的分区器是RangerPartitioner
            System.out.println("after sort partitioner num: "+wordredues.getNumPartitions());
            System.out.println("after sort partitioner . partitioner : " +
                    ""+wordredues.partitioner().toString());
    
            //设置HashPartitioner
            wordredues =wordredues.partitionBy(new HashPartitioner(wordredues.getNumPartitions()));
            System.out.println("after set hash partitioner . partitioner num :"+wordredues.partitioner().toString());
            System.out.println("after set hash partitioner . partitioner :"+wordredues.partitioner().toString());
    
        }
    }
    
    
    

    运行结果

    
    local partitions:
    rdd partitions num 8
    rdd partitioner :Optional.empty
    console all word
    
    hello
    java
    world
    hello
    python
    world
    hello
    spark
    world
    console all pair
    (hello,1)
    (java,1)
    (world,1)
    (hello,1)
    (python,1)
    (world,1)
    (hello,1)
    (spark,1)
    (world,1)
    wordPairs partitioner :Optional.empty
    wordredues partitioner num: 8
    wordredues partitioner :Optional[org.apache.spark.HashPartitioner@8]
    console all
    (python,1)
    (spark,1)
    (hello,3)
    (java,1)
    (world,3)
    test sort:
    (python,1)
    (spark,1)
    (java,1)
    (hello,3)
    (world,3)
    after sort partitioner num: 5
    after sort partitioner . partitioner : Optional[org.apache.spark.RangePartitioner@e6319a7d]
    after set hash partitioner . partitioner num :5
    after set hash partitioner . partitioner :Optional[org.apache.spark.HashPartitioner@5]
    
    
    
  • 相关阅读:
    JSP ——第九次作业
    JSP ——第八次作业
    JSP ——第七次作业-mail_system
    JSP ——第六次作业
    JSP——第五次作业
    软件测试——第二次
    JSP作业 四——2
    JSP 作业 四 —(1)
    JSP 第三次作业
    NSData的同步下载与NSConnection的同步下载
  • 原文地址:https://www.cnblogs.com/JuncaiF/p/12407871.html
Copyright © 2020-2023  润新知