• ZGC gc策略及回收过程-源码分析


    源码文件:/src/hotspot/share/gc/z/zDirector.cpp

     一、回收策略

    main入口函数:

    void ZDirector::run_service() {
      // Main loop
      while (_metronome.wait_for_tick()) {
        sample_allocation_rate();
        const GCCause::Cause cause = make_gc_decision();
        if (cause != GCCause::_no_gc) {
          ZCollectedHeap::heap()->collect(cause);
        }
      }
    }
    ZMetronome::wait_for_tick 是zgc定义的一个循环时钟函数,sample_allocation_rate函数则用于rule_allocation_rate策略估算可能oom的时间。重点关注:make_gc_decision函数,在判断从make_gc_decision函数返回的结果不是no_gc后,zgc将进行一次gc。
     
    make_gc_decision函数:
    GCCause::Cause ZDirector::make_gc_decision() const {
      // Rule 0: Timer
      if (rule_timer()) {
        return GCCause::_z_timer;
      }
    
      // Rule 1: Warmup
      if (rule_warmup()) {
        return GCCause::_z_warmup;
      }
    
      // Rule 2: Allocation rate
      if (rule_allocation_rate()) {
        return GCCause::_z_allocation_rate;
      }
    
      // Rule 3: Proactive
      if (rule_proactive()) {
        return GCCause::_z_proactive;
      }
    
      // No GC
      return GCCause::_no_gc;
    }
    make_gc_decision一共提供了4种被动gc策略:
    rule 1:固定间隔时间
    通过配置ZCollectionInterval参数,可以控制zgc在一个固定的时间间隔进行gc,默认值为0,表示不采用该策略,否则则判断从上次gc到现在的时间间隔是否大于ZCollectionInterval秒,是则gc。源码如下:
    bool ZDirector::rule_timer() const {
      if (ZCollectionInterval == 0) {
        // Rule disabled
        return false;
      }
    
      // Perform GC if timer has expired.
      const double time_since_last_gc = ZStatCycle::time_since_last();
      const double time_until_gc = ZCollectionInterval - time_since_last_gc;
    
      log_debug(gc, director)("Rule: Timer, Interval: %us, TimeUntilGC: %.3lfs",
                              ZCollectionInterval, time_until_gc);
    
      return time_until_gc <= 0;
    }

    rule 2:预热规则

    is_warm函数判断gc次数是否已超过3次,是则不使用该策略。

    注释说的很清楚,当gc次数少于3时,判断堆使用率达到10%/20%/30%时,使用该策略

    bool ZDirector::rule_warmup() const {
      if (is_warm()) {
        // Rule disabled
        return false;
      }
    
      // Perform GC if heap usage passes 10/20/30% and no other GC has been
      // performed yet. This allows us to get some early samples of the GC
      // duration, which is needed by the other rules.
      const size_t max_capacity = ZHeap::heap()->current_max_capacity();
      const size_t used = ZHeap::heap()->used();
      const double used_threshold_percent = (ZStatCycle::ncycles() + 1) * 0.1;
      const size_t used_threshold = max_capacity * used_threshold_percent;
    
      log_debug(gc, director)("Rule: Warmup %.0f%%, Used: " SIZE_FORMAT "MB, UsedThreshold: " SIZE_FORMAT "MB",
                              used_threshold_percent * 100, used / M, used_threshold / M);
    
      return used >= used_threshold;
    }
    
    bool ZDirector::is_warm() const {
      return ZStatCycle::ncycles() >= 3;
    }
    
    // 位置:ZStat.cpp
    uint64_t ZStatCycle::ncycles() {
      return _ncycles; // gc次数
    }

    rule 3:分配速率预估

    is_first函数判断如果是首次gc,则直接返回false。

    ZAllocationSpikeTolerance默认值为2,分配速率策略采用正态分布模型预测内存分配速率,加上ZAllocationSpikeTolerance修正因子,可以覆盖超过99.9%的内存分配速率的可能性

    bool ZDirector::rule_allocation_rate() const {
      if (is_first()) {
        // Rule disabled
        return false;
      }
    
      // Perform GC if the estimated max allocation rate indicates that we
      // will run out of memory. The estimated max allocation rate is based
      // on the moving average of the sampled allocation rate plus a safety
      // margin based on variations in the allocation rate and unforeseen
      // allocation spikes.
    
      // Calculate amount of free memory available to Java threads. Note that
      // the heap reserve is not available to Java threads and is therefore not
      // considered part of the free memory.
      const size_t max_capacity = ZHeap::heap()->current_max_capacity();
      const size_t max_reserve = ZHeap::heap()->max_reserve();
      const size_t used = ZHeap::heap()->used();
      const size_t free_with_reserve = max_capacity - used;
      const size_t free = free_with_reserve - MIN2(free_with_reserve, max_reserve);
    
      // Calculate time until OOM given the max allocation rate and the amount
      // of free memory. The allocation rate is a moving average and we multiply
      // that with an allocation spike tolerance factor to guard against unforeseen
      // phase changes in the allocate rate. We then add ~3.3 sigma to account for
      // the allocation rate variance, which means the probability is 1 in 1000
      // that a sample is outside of the confidence interval.
      const double max_alloc_rate = (ZStatAllocRate::avg() * ZAllocationSpikeTolerance) + (ZStatAllocRate::avg_sd() * one_in_1000);
      const double time_until_oom = free / (max_alloc_rate + 1.0); // Plus 1.0B/s to avoid division by zero
    
      // Calculate max duration of a GC cycle. The duration of GC is a moving
      // average, we add ~3.3 sigma to account for the GC duration variance.
      const AbsSeq& duration_of_gc = ZStatCycle::normalized_duration();
      const double max_duration_of_gc = duration_of_gc.davg() + (duration_of_gc.dsd() * one_in_1000);
    
      // Calculate time until GC given the time until OOM and max duration of GC.
      // We also deduct the sample interval, so that we don't overshoot the target
      // time and end up starting the GC too late in the next interval.
      const double sample_interval = 1.0 / ZStatAllocRate::sample_hz;
      const double time_until_gc = time_until_oom - max_duration_of_gc - sample_interval;
    
      log_debug(gc, director)("Rule: Allocation Rate, MaxAllocRate: %.3lfMB/s, Free: " SIZE_FORMAT "MB, MaxDurationOfGC: %.3lfs, TimeUntilGC: %.3lfs",
                              max_alloc_rate / M, free / M, max_duration_of_gc, time_until_gc);
    
      return time_until_gc <= 0;
    }
    
    bool ZDirector::is_first() const {
      return ZStatCycle::ncycles() == 0;
    }

    rule 4:积极回收策略

    通过ZProactive可启用积极回收策略,is_warm函数判断启用该策略必须是在预热之后(gc次数超过3次)

    自上一次gc后,堆使用率达到xmx的10%或者已过了5分钟,这个参数是弥补第三个规则中没有覆盖的场景,从上述分析可以得到第三个条件更多的覆盖分配速率比较高的场景。

    bool ZDirector::rule_proactive() const {
      if (!ZProactive || !is_warm()) {
        // Rule disabled
        return false;
      }
    
      // Perform GC if the impact of doing so, in terms of application throughput
      // reduction, is considered acceptable. This rule allows us to keep the heap
      // size down and allow reference processing to happen even when we have a lot
      // of free space on the heap.
    
      // Only consider doing a proactive GC if the heap usage has grown by at least
      // 10% of the max capacity since the previous GC, or more than 5 minutes has
      // passed since the previous GC. This helps avoid superfluous GCs when running
      // applications with very low allocation rate.
      const size_t used_after_last_gc = ZStatHeap::used_at_relocate_end();
      const size_t used_increase_threshold = ZHeap::heap()->current_max_capacity() * 0.10; // 10%
      const size_t used_threshold = used_after_last_gc + used_increase_threshold;
      const size_t used = ZHeap::heap()->used();
      const double time_since_last_gc = ZStatCycle::time_since_last();
      const double time_since_last_gc_threshold = 5 * 60; // 5 minutes
      if (used < used_threshold && time_since_last_gc < time_since_last_gc_threshold) {
        // Don't even consider doing a proactive GC
        log_debug(gc, director)("Rule: Proactive, UsedUntilEnabled: " SIZE_FORMAT "MB, TimeUntilEnabled: %.3lfs",
                                (used_threshold - used) / M,
                                time_since_last_gc_threshold - time_since_last_gc);
        return false;
      }
    
      const double assumed_throughput_drop_during_gc = 0.50; // 50%
      const double acceptable_throughput_drop = 0.01;        // 1%
      const AbsSeq& duration_of_gc = ZStatCycle::normalized_duration();
      const double max_duration_of_gc = duration_of_gc.davg() + (duration_of_gc.dsd() * one_in_1000);
      const double acceptable_gc_interval = max_duration_of_gc * ((assumed_throughput_drop_during_gc / acceptable_throughput_drop) - 1.0);
      const double time_until_gc = acceptable_gc_interval - time_since_last_gc;
    
      log_debug(gc, director)("Rule: Proactive, AcceptableGCInterval: %.3lfs, TimeSinceLastGC: %.3lfs, TimeUntilGC: %.3lfs",
                              acceptable_gc_interval, time_since_last_gc, time_until_gc);
    
      return time_until_gc <= 0;
    }

    最后,当所有策略都不满足时,返回_no_gc,表示不进行gc

    二、回收过程

    gc整个周期:

    彩色指针示意图:

    • (STW)Pause Mark Start,开始标记,这个阶段只会标记(Mark0)由root引用的object,组成Root Set
    • Concurrent Mark,并发标记,从Root Set出发,并发遍历Root Set object的引用链并标记(Mark1)
    • (STW)Pause Mark End,检查是否已经并发标记完成,如果不是,需要进行多一次Concurrent Mark
    • Concurrent Process Non-Strong References,并发处理弱引用
    • Concurrent Reset Relocation Set
    • Concurrent Destroy Detached Pages
    • Concurrent Select Relocation Set,并发选择Relocation Set;
    • Concurrent Prepare Relocation Set,并发预处理Relocation Set
    • (STW)Pause Relocate Start,开始转移对象,依然是遍历root引用
    • Concurrent Relocate,并发转移,将需要回收的Page里的对象转移到Relocation Set,然后回收Page给系统重新利用

    run_gc_cycle函数(/src/hotspot/share/gc/z/zDriver.cpp):

    void ZDriver::run_gc_cycle(GCCause::Cause cause) {
      ZDriverCycleScope scope(cause);
    
      // Phase 1: Pause Mark Start
      {
        ZMarkStartClosure cl;
        vm_operation(&cl);
      }
    
      // Phase 2: Concurrent Mark
      {
        ZStatTimer timer(ZPhaseConcurrentMark);
        ZHeap::heap()->mark();
      }
    
      // Phase 3: Pause Mark End
      {
        ZMarkEndClosure cl;
        while (!vm_operation(&cl)) {
          // Phase 3.5: Concurrent Mark Continue
          ZStatTimer timer(ZPhaseConcurrentMarkContinue);
          ZHeap::heap()->mark();
        }
      }
    
      // Phase 4: Concurrent Process Non-Strong References
      {
        ZStatTimer timer(ZPhaseConcurrentProcessNonStrongReferences);
        ZHeap::heap()->process_non_strong_references();
      }
    
      // Phase 5: Concurrent Reset Relocation Set
      {
        ZStatTimer timer(ZPhaseConcurrentResetRelocationSet);
        ZHeap::heap()->reset_relocation_set();
      }
    
      // Phase 6: Concurrent Destroy Detached Pages
      {
        ZStatTimer timer(ZPhaseConcurrentDestroyDetachedPages);
        ZHeap::heap()->destroy_detached_pages();
      }
    
      // Phase 7: Concurrent Select Relocation Set
      {
        ZStatTimer timer(ZPhaseConcurrentSelectRelocationSet);
        ZHeap::heap()->select_relocation_set();
      }
    
      // Phase 8: Concurrent Prepare Relocation Set
      {
        ZStatTimer timer(ZPhaseConcurrentPrepareRelocationSet);
        ZHeap::heap()->prepare_relocation_set();
      }
    
      // Phase 9: Pause Relocate Start
      {
        ZRelocateStartClosure cl;
        vm_operation(&cl);
      }
    
      // Phase 10: Concurrent Relocate
      {
        ZStatTimer timer(ZPhaseConcurrentRelocated);
        ZHeap::heap()->relocate();
      }
    }

    未完待续 

  • 相关阅读:
    ex01 温度转换1
    12 字典的遍历在 Python2 与 Python3 中区别
    11 序列中有多个最值时会索引出哪个
    10 isalpha() 对于字母的定义
    09 Python3 的深拷贝与浅拷贝
    08 in
    07 len()
    06 “杠零”与空字符
    导航点击字体变色
    清除浮动
  • 原文地址:https://www.cnblogs.com/JunFengChan/p/11707542.html
Copyright © 2020-2023  润新知