• CF1182E Product Oriented Recurrence


    CF1182E Product Oriented Recurrence

    有一个递推式 (f_x=c^{2x-6}cdot f_{x-1}cdot f_{x-2}cdot f_{x-3};;(xge4))

    给定 (n, f_1, f_2, f_3, c) ,求 (f_nmod(10^9+7))

    (nleq10^{18}, c, f_1, f_2, f_3in[1, 10^9])

    矩阵加速


    看到递推式很容易联想到矩阵加速,但是矩阵无法便捷地处理这种递推式。由于该递推式是一些数的乘积的形式,因此可以考虑求出每一项的指数

    (a_{i, 1/2/3}) 表示 (f_i) 由多少个 (f_{1/2/3}) 的乘积组成,可以发现 (a_{i, j}=a_{i-1, j}+a_{i-2, j}+a_{i-3, j}) ,初值为 (a_{1, 1}=a_{2, 2}=a_{3, 3}=1) ,可以使用矩阵加速

    (g_i)(f_i) 由多少个 (c) 的乘积组成,递推式即为 (g_i=g_{i-1}+g_{i-2}+g_{i-3}+2i-6) ,初值 (g_i=0) ,可以使用矩阵加速,求出的矩阵即为 (egin{bmatrix}0&0&0&8&1end{bmatrix} imesegin{bmatrix}1&1&0&0&0\1&0&1&0&0\1&0&0&0&0\1&0&0&1&0\-6&0&0&2&1end{bmatrix}^{n-3})

    接下来就可以用快速幂还原答案,但是由于指数可能过大,因此得将指数 (operatorname{mod} varphi(10^9+7)=10^9+6)

    时间复杂度 (O(log n))

    代码

    #include <bits/stdc++.h>
    using namespace std;
    
    typedef long long ll;
    const int P = 1e9 + 7, mod = 1e9 + 6;
    ll n;
    
    #define rep(i) for (int i = 0; i < 5; i++)
    
    struct matrix {
      int array[5][5];
    
      inline void clr() {
        memset(array, 0, sizeof array);
      }
    
      inline int* operator [] (int pos) {
        return array[pos];
      }
    } E, A, M;
    
    inline matrix operator * (matrix a, matrix b) {
      static matrix s;
      s.clr();
      rep(i) rep(j) rep(k) s[i][j] = (s[i][j] + 1ll * a[i][k] * b[k][j]) % mod;
      return s;
    }
    
    inline qp(int a, int k) {
      int res = 1;
      for (; k; k >>= 1, a = 1ll * a * a % P) {
        if (k & 1) res = 1ll * res * a % P;
      }
      return res;
    }
    
    inline matrix qp(matrix a, ll k) {
      matrix res = E;
      for (; k; k >>= 1, a = a * a) {
        if (k & 1) res = res * a;
      }
      return res;
    }
    
    inline int calc(int x) {
      A.clr(), A[0][x] = 1;
      return (A * qp(M, n - 3))[0][0];
    }
    
    int main() {
      int c, f1, f2, f3;
      scanf("%I64d %d %d %d %d", &n, &f1, &f2, &f3, &c);
      rep(i) E[i][i] = 1;
      M[0][0] = M[0][1] = M[1][0] = M[2][0] = M[1][2] = 1;
      int c1 = calc(2);
      int c2 = calc(1);
      int c3 = calc(0);
      A.clr(), A[0][3] = 8, A[0][4] = 1;
      M[4][3] = 2, M[4][0] = -6, M[3][0] = M[3][3] = M[4][4] = 1;
      int cnt = (A * qp(M, n - 3))[0][0];
      int ans = 1ll * qp(f1, c1) * qp(f2, c2) % P * qp(f3, c3) % P * qp(c, cnt) % P;
      printf("%d", ans);
      return 0;
    }
    
  • 相关阅读:
    Apache Common DbUtils
    Jackson 框架,轻易转换JSON
    Java数据库ResultSet转json实现
    java获得当前文件路径
    JSP基本面试的试题
    mysql优化方法积累
    linux数据盘分区以及格式化
    linux 数据盘和系统盘的查看
    配置Tomcat使用https协议(配置SSL协议)
    idea-java项目配置
  • 原文地址:https://www.cnblogs.com/Juanzhang/p/11007468.html
Copyright © 2020-2023  润新知